

M3 Junction 9 Improvement

Scheme Number: TR010055

6.3 Environmental Statement Appendix 13.2 - Hydrogeological Risk Assessment

APFP Regulation 5(2)(a)

Planning Act 2008

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

Volume 6

November 2022

Infrastructure Planning

Planning Act 2008

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

M3 Junction 9 Improvement Development Consent Order 202[x]

6.3 ENVIRONMENTAL STATEMENT - APPENDIX 13.2: HYDROGEOLOGICAL RISK ASSESSMENT

Regulation Number:	Regulation 5(2)(a)	
Planning Inspectorate Scheme Reference:	TR010055	
Application Document Reference:	6.3	
BIM Document Reference:	HE551511-VFK-EWE-X_XXXX_XX-RP-LE-0003	
Author:	M3 Junction 9 Improvement Project Team, National Highways	

Version Date		Status of Version
Rev 0	November 2022	Application Submission

i

Contents

1	Introd	duction	1
	1.1	Background	1
	1.2	Objectives	2
	1.3	Scope of work	2
	1.4	Competent expert	3
2	Draina	age strategy and HEWRAT assessment	5
3	Basel	line conditions	9
	3.1	Site setting	9
	3.2	Geology	9
	3.3	Hydrology	23
	3.4	Hydrogeology	26
	3.5	Groundwater levels and flow	29
	3.6	Contaminated land and pollution events	40
	3.7	Groundwater quality	40
	3.8	Other potential receptors	44
4	Conce	eptual site model	55
	4.1	Sources	55
	4.2	Pathways	56
5	Grour	ndwater Impact Assessment	58
	5.2	Road drainage	58
	5.3	Filled areas	58
6	Detail	led Quantitative Risk Assessment for EDBs	62
	6.1	Introduction	62
	6.2	Model Parameterisation	63
	6.3	Model Results	69
7	Concl	lusions and recommendations	74
	7.1	Conclusions	74
	7.2	Recommendations	
8	Refere	ences	76
Fig	gures		
Figu	ure 1.1 S	Site location and points of interest	4
Figu	ure 2.1:	Application boundary and locations of EDBs	8
		Bedrock geologySuperficial geology and artificial ground	

Figure 3.3: Superficial geology - central area	. 14
Figure 3.4: Local superficial geology superimposed on proposed drainage	. 19
Figure 3.5: Historical landfill areas	
Figure 3.6: Surface water features	. 25
Figure 3.7: Groundwater dip data from final day of installation works in mbgl	. 30
Figure 3.8: Groundwater levels data from final day of installation works in mAOD	. 31
Figure 3.9: Boreholes monitored for groundwater level	
Figure 3.10: Groundwater level in Application Boundary SI boreholes in the	
Application Boundary (mAOD)	. 36
Figure 3.11: Groundwater level in Application Boundary SI boreholes in metres bel	low
ground levelground level	. 37
Figure 3.12: Application Boundary overlaid on the Hydrogeological map (Institute of	of
Hydrological Sciences, 1979)	
Figure 3.13: Groundwater quality monitoring locations	. 41
Figure 3.14: Licenced and private abstractions and SPZs	
Figure 3.15: Designated sites within 2 km	
Tables	
Table 2.1: Summary of attenuation structures	
Table 3.1: Stratigraphy of the bedrock geology in the Winchester (based on the BC	
Sheet 299 (British Geological Survey, 2002) and BGS memoir (Booth et al., 2008)	9
Table 3.2: Summary of cavities hazard for each basin (from Appendix A of the	
Ground Investigation Report (Document Reference 7.11))	
Table 3.3: Summary of lithologies encountered from Ground Investigation Report	
(Document Reference 7.11)	
Table 3.4 Historical landfill areas	. 20
Table 3.5: Outline definitions of Source Protection Zones	
Table 3.6: Calculated soil infiltration rates (from Table 9.5 in the Ground Investigat	
Report (Document Reference 7.11))	
Table 3.7: Groundwater level dip data during site investigation works in mAOD	. 32
Table 3.8: Groundwater monitoring locations	
Table 3.9: Summary of groundwater levels (June 2019 to July 2020)	
Table 3.10: Approximate depth to groundwater at unlined EDBs	
Table 3.11: Pollution incidents within 2km (from Envirocheck, 2016)	. 40
Table 3.12: Summary of groundwater quality data (based on data in Controlled	
Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document	
Reference 6.1))	
Table 3.13: Private water abstractions (within 2km of initial scheme boundary)	
Table 3.14: Designated Sites within 2km of the Application Boundary	. 47
Table 3.15: Licenced groundwater and surface water abstractions	. 49
Table 5.1: Summary of impacts	. 59
Table 6.1 Infiltration rates	. 63
Table 6.2: Source geometry	
Table 6.3: Chronic Source terms (from HEWRAT)	
Table 6.4: Acute source term concentrations (from HEWRAT – 95th percentile (mg	/l))
65	
Table 6.5: Attenuation parameters	
Table 6.6: Solubility parameters	. 66

Table 6.7: Table	arget concentrations	66
	ydrogeology parameters	
	DB2 Predicted concentrations (mg/l)	
	EDB2 Predicted concentrations (mg/l)	
	EDB2 Predicted concentrations (mg/l)	
	EDB3B Predicted concentrations (mg/l)	
	EDB3C Predicted concentrations (mg/l)	
Table 6.14: \$	Sensitivity run 1: fraction of organic carbon (mg/l) at 100 years	71
Table 6.15:	Sensitivity run 2a: infiltration rate and unsaturated zone hydraulic	
	(mg/l) at 100 years	
Table 6.16:	Sensitivity run 3: unsaturated zone thickness (mg/l) at 100 years	73
Appendi	ces	
Appendix A	HE551511-VFK-HDG-X_XXXX_XX-DR-CD-0512_Drainage Schemat	tic
	Plan	
Appendix B	HEWRAT screening assessments	
Appendix C	HE551551-VFK-HGT-X_XXXX_XX-DR-GE-004 Exploratory hole	
	location plan	
Appendix D	HE551551-VFK-HGT-X_XXXX_XX-DR-GE-0020 Geological plan	
Appendix E	RAM model files	

6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

1 Introduction

1.1 Background

- 1.1.1 The M3 Junction 9 Improvement Scheme (the Scheme) is located at Junction 9 of the M3 to the east of Winchester, running north to south, centred in the Winnall area and extending north to Headbourne Worthy (Figure 1.1). The Scheme includes proposed motorway modifications including the introduction of a new on/off slip road to both northbound and southbound sides of the M3, new link roads between the A33, A34, A272 and M3 roads and a new overhead gyratory above the M3 corridor.
- 1.1.2 Parts of the Scheme are located in a low spot of the M3, towards which a total of approximately 1.6km of the existing M3 corridor drains. A separate Motorway Upgrade Project is currently being constructed immediately to the south of the Scheme, which also drains towards the land within the Scheme's application boundary (Application Boundary).
- 1.1.3 West of the Application Boundary are commercial and light industrial land uses associated with the Wykeham Trade Park and Winnall Industrial Estate. Most of the surrounding non-highway land is used for agricultural purposes, with arable grassland to the north, and a number of fisheries located to the west.
- 1.1.4 The Application Boundary is located in a sensitive hydrogeological environmental setting, located adjacent to the River Itchen, which underlies the M3 and A34 in the north. The River is a designated Main River, with the associated floodplain designated as a Special Area of Conservation (SAC) and Site of Special Scientific Interest (SSSI). The Application Boundary is underlain by bedrock deposits of the White Chalk Subgroup, which are classified by the Environment Agency as a Principal Aquifer. Surrounding abstractions include thirty-one public abstractions, alongside nine abstractions for private water supplies within 2 km of the Scheme.
- 1.1.5 A ground investigation (GI) was previously undertaken, and additional works have been proposed by Stantec to provide supplementary information. Interpretation of the GI data is provided in the Ground Investigation Report (Document Reference 7.11).
- 1.1.6 The Drainage Strategy Report which forms Appendix 13.1 (Drainage Strategy Report) of the Environmental Statement (ES) (Document Reference 6.3) prepared for the planning application included a National Highways Water Risk Assessment Tool (HEWRAT) screening assessment. The results of the screening assessment are that all but one of the currently proposed Extended Detention Basins (EDT) present a 'medium risk' to groundwater and one has a high risk. LA113 (Road drainage and the water environment) (Highways England, 2020) states that where (HEWRAT) indicates a groundwater risk assessment is medium or high, a detailed assessment should be completed by a competent expert with the degree of detail being appropriate to the medium or high result.

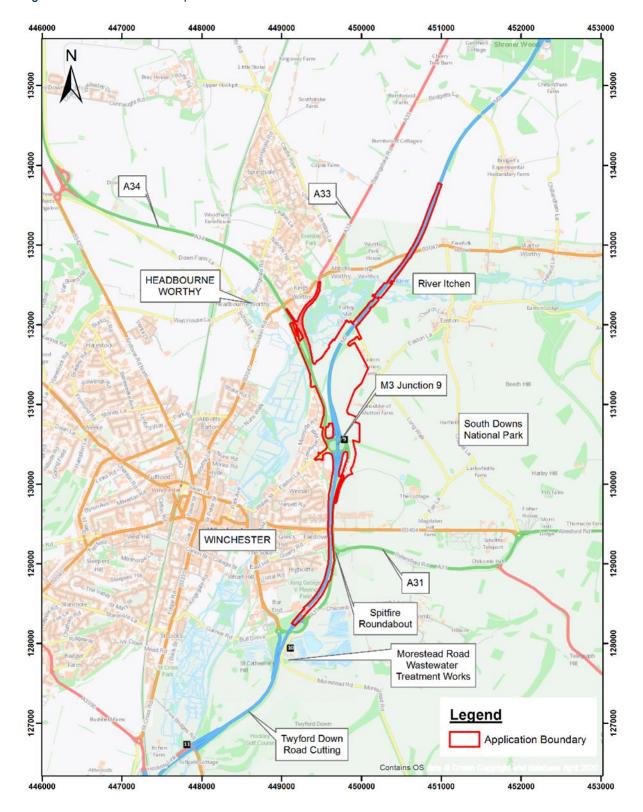
- 1.1.7 A large area requires to be built up in the east of the Application Boundary (as shown in yellow on Drawing HE551511-VFK-HGN-X_XXXX_XX-SK-CH-0004_P03). It is expected that much of the material excavated from elsewhere in the Scheme will be used to fill this eastern area.
- 1.1.8 Piling will be undertaken as part of the works, and a piling risk assessment will be carried out prior to works commencing, in accordance with Environment Agency methodology. This risk assessment will consider impacts on the water environment.

1.2 Objectives

- 1.2.1 In its 'M3 Junction 9 Improvement Environmental Impact Assessment (EIA) Scoping Notification and Consultation Reg 11' response to the Scoping Report the Environment Agency indicated concern, given the sensitivity of the groundwater environment beneath the Application Boundary.
- 1.2.2 Further comments were received from the Environment Agency in response to the Preliminary Environmental Information Report (PEIR). The Environment Agency states that its primary concern regarding the Scheme relates to the protection of groundwater, and protection / enhancement of the ecological balance and species within the River Itchen and surrounding areas.
- 1.2.3 This document has been prepared on behalf of National Highways to provide the appropriate assessment for potential impacts to groundwater from the Scheme and, in particular, to address the concerns raised by the Environment Agency in its consultation responses.

1.3 Scope of work

- 1.3.1 This report presents a Hydrogeological Risk Assessment (HgRA) to identify the significance of risks to the Chalk Aquifer and River Itchen. This HgRA is based on government guidelines appropriate to the geological and hydrogeological environment, which promote the protection of water bodies and related receptors from potential impact of development activities. Specific guidance referenced when undertaking the assessment include:
 - Design Manual for Roads and Bridges (DMRB) LA 113 Road drainage and the water environment (Highways England, 2020)
 - The Environment Agency's approach to groundwater protection (Environment Agency, 2018)
 - Remedial Targets Methodology for contaminated land (Environment Agency, 2006)
 - Contaminated Land Risk Assessment, A Guide to Good Practice (CIRIA, 2021)
 - Guidance on land contamination risk management (Environment Agency, 2021)


- 1.3.2 The scope of work undertaken for this HgRA includes the following:
 - Review of the baseline geology and hydrogeology for the Application Boundary and surrounding area
 - Identification of receptors and assessment of potential impacts
 - Recommendations for appropriate monitoring and mitigation measures
 - Preparation of a Detailed Quantitative Risk Assessment (DQRA) for risks that are qualitatively assessed as significant

1.4 Competent expert

1.4.1 This report has been prepared by Stantec's Robert Sears, who is a hydrogeologist of over 30 years' experience. Robert is a Fellow of the Geological Society and is a Chartered Geologist.

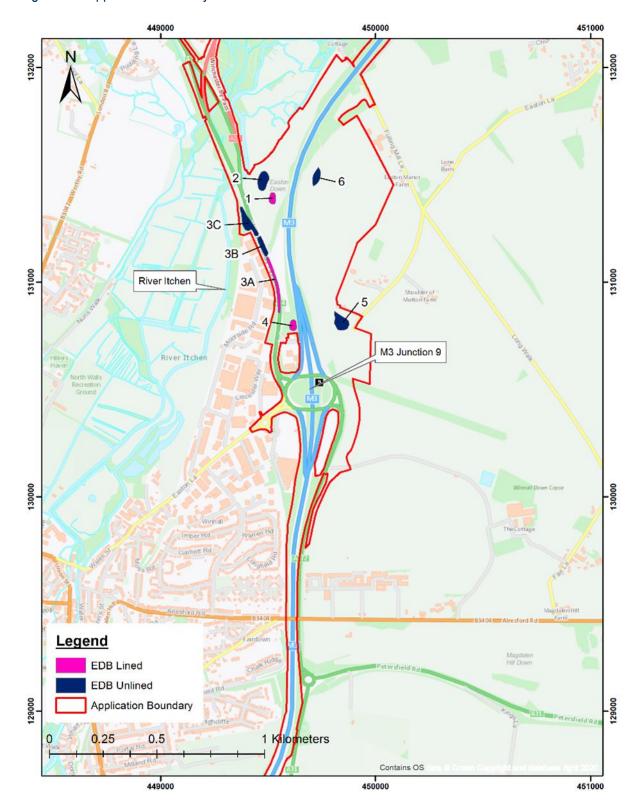
Figure 1.1 Site location and points of interest

2 Drainage strategy and HEWRAT assessment

- 2.1.1 The Scheme's drainage strategy is described in **Appendix 13.1 (Drainage Strategy Report)** of the **ES (Document Reference 6.3).** The design approach is to install new gravity drainage for all new carriageway, or to replace existing highway drainage that is being built over by new impermeable highway, such as hardening of the central reserve and lane widenings.
- 2.1.2 In areas where existing carriageway is being overlaid only, then existing highway drainage is retained.
- 2.1.3 Areas of local, minor lane widenings proposed remote from the main works, are drained to existing highway drainage, which is modified, where required, to maintain existing discharge rates and no-flooding capacity.
- 2.1.4 All new drainage conveys run-off to extended detention basins (EDBs), which infiltrate to ground where the HEWRAT assessment of risk to groundwater, allows. These new EDBs are shown in **Figure 2.1**.
- 2.1.5 Runoff volumes are attenuated in the EDBs as far as space and acceptable draw-down times allow. Runoff volumes that are unable to drain to ground within a practical time period are discharged to the River Itchen.
- 2.1.6 Treatment of run-off before discharge is proposed as follows:
 - Over-the-edge drainage of run-off from carriageways on embankments to filter strips and to infiltration ditches
 - Collection of run-off at carriageway edges in linear drains, gullies or filter drains, which is piped to the following:
 - Attenuation and Primary Settlement treatment in filtration forebays and unplanted, lined EDBs
 - Attenuation, Secondary Settlement and Filtration treatment in vegetated EDBs, containing both wet and dry habitats
 - Tertiary treatment in a grassed swale prior to discharge to the River Itchen
- 2.1.7 The only areas where existing linear infiltration drainage, or sealed drainage, is retained (and enhanced where necessary to limit flooding), will be the A33/A34 carriageway to the north of the River Itchen (above northing 131500) and M3 carriageway (above northing 131500). Both these retained areas are proposed to discharge to the River Itchen via existing open ditches or filter trenches.
- 2.1.8 The proposed drainage design is shown on Drawing HE551511-VFK-HDG-X_XXXX_XX-DR-CD-0512 which is included here as **Appendix A**. A summary of the EDBs is included in **Table 2.1** and they are also labelled and shown on Figure 2.1.

Table 2.1: Summary of attenuation structures

Basin ref.	Туре	Source	Inflows	Outfalls
1	EDB (lined)	Highway	From highway	To EDB 2
2	EDB (unlined)	Highway	From highway and EDB 1	To ground and river
3A	EDB (lined)	Highway	From highway	To EDB3B
3B	EDB (unlined)	Highway	From highway and EDB3A	To ground and EDB 3C
3C	EDB (unlined)	Highway	From highway and EDB3B	To ground and river via swale
4	EDB (lined)	Highway	From highway	To EDB 3A
5	EDB (unlined)	Rural overland flow and Highway runoff	From highway and rural land to east	To ground
6	EDB (unlined)	Rural overland flow	From rural land to east	To ground


- 2.1.9 Each EDB has been assessed using the HEWRAT. As detailed in the HEWRAT Help Guide (Highways England, 2015), the tool considers the following potential pollutants:
 - Acute pollution impacts associated with copper and zinc
 - Chronic pollution impacts associated with the following determinants in sediments: total copper, zinc, cadmium and total polycyclic aromatic hydrocarbons (PAH), including specific PAH's: pyrene, fluoranthene, anthracene, and phenanthrene
- 2.1.10 For groundwater risk, HEWRAT uses an empirical approach taking into account the following factors:
 - Traffic flow rate
 - Rainfall rate
 - Ratio of drainage area of road to active surface area of infiltration device

- Infiltration method
- Unsaturated zone thickness
- Flow Type
- Unsaturated zone clay content
- Fraction of organic carbon
- Unsaturated zone soil pH
- 2.1.11 For each of these parameters, a component score between 1 and 3 is assigned and this is then multiplied by a weighting factor for that parameter to provide a score. This process is repeated for all parameters and the scores are then summed to provide an overall risk score.
- 2.1.12 The HEWRAT screening assessments for each of the EDBs are presented in **Appendix B**. For the EDBs that discharge to ground, the highest scores (high risk) are derived where the unsaturated zone is thin (<5 m) and the flow type is dominated by fractures and fissures. The basins that get medium risk scores are those which either:
 - a) Have a thicker unsaturated zone over fractures and fissures, or
 - b) Have intergranular flow through superficial deposits and / or the unsaturated zone is thicker

Figure 2.1: Application boundary and locations of EDBs

3 Baseline conditions

3.1 Site setting

3.1.1 The Application Boundary is located in the River Itchen valley. The elevation in the west of the Application Boundary is approximately 40m above ordnance datum (mAOD) and the land rises to the east up to a maximum of approximately 75mAOD.

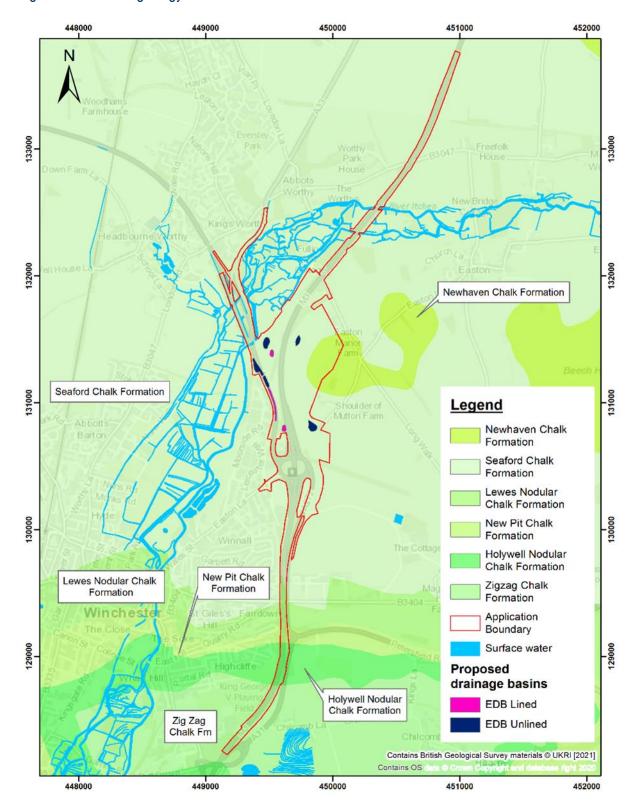
3.2 Geology

Regional geology

Bedrock

- 3.2.1 The British Geological Survey (BGS) indicates that the bedrock geology underlying the Application Boundary comprises the White Chalk Subgroup and the upper part of the Grey Chalk Formation of the Late Cretaceous era (Figure 3.1). The stratigraphy of the rock units in the Application Boundary and surrounding area are summarised in Table 3.1. In the Application Boundary, the five lower formations of the White Chalk outcrop, with the Seaford Chalk Formation outcropping across the majority of the Application Boundary, including the central area around Junction 9 itself and the River Itchen. The Seaford Chalk Formation typically consists of firm white chalk, with nodular and tabular flint seams. Underlying the Seaford Chalk are the Lewes Nodular Chalk Formation, New Pit Chalk Formation, Holywell Nodular Chalk Formation (all of the White Chalk) and Zig Zag Chalk Formation (Grey Chalk Subgroup). These units crop out to the south of the Spitfire Roundabout (A31 and A272). Above the Seaford Chalk Formation is the Newhaven Chalk Formation, which outcrops in small areas in the north of the Application Boundary.
- 3.2.2 The Application Boundary lies on the Winchester-East Meon Anticline, an east to west trending fold. In the main central area of the Application Boundary, the strata dip 5-10 degrees to the north. In the south of the Application Boundary, south of the Spitfire Roundabout, the strata dip 4 degrees to the south.

Table 3.1: Stratigraphy of the bedrock geology in the Winchester (based on the BGS Sheet 299 (British Geological Survey, 2002) and BGS memoir (Booth et al., 2008)


	Name	Thickness	nickness Description	
White Chalk Sub-group	Portsdown Chalk Formation	5	White chalk with marl beds and a few flint bands	No
White Sub-ç	Culver Chalk Formation	50-70	White chalk with flints and many thin marl beds. Comprises the Tarrant Chalk	No

	Name	Thickness	Description	Present at surface at Application Boundary?
			Member and the Spetisbury Chalk Member.	
	Newhaven Chalk Formation	40-70	Soft to medium hard, white chalk with flints and many thin marl beds (20-70 mm thick).	Yes – small areas in the north
	Seaford Chalk Formation	40-65	Soft white chalk with seams of large nodular and semi-tabular flint. Commonly blocky.	Yes – majority of central area
	Lewes Nodular Chalk Formation	55-65	White, interbedded hard, nodular chalks with softmedium chalks and marls. Contains persistent seams of flints near the base. Conjugate fractures. Contains karstic features in the Twyford Down Cutting (approx. 500 m south of Application Boundary – See Figure 1.1 Error! Reference source not found.) including a partially sediment-filled paleaocave system and calcreted karst.	Yes
New Pit Chalk Formation Au-45 regular Massiv Flint be the suc		White chalk with many regularly spaced marl beds. Massive and medium hard. Flint beds in the upper half of the succession. Conjugate fractures.	Yes	
	Holywell Nodular Chalk Formation	25-30	Hard, nodular chalk with some shelly beds. Characterised by shell debris. Includes Melbourn Rock (c. 5 m) and Plenus Marls (1-3 m) at base.	Yes
Grey Chalk Sub- group	Zig Zag Chalk Formation			Yes

Figure 3.1: Bedrock geology

Superficial deposits

3.2.3 Superficial deposits are shown on **Figure 3.2** and **Figure 3.3**. The majority of the Application Boundary is not underlain by superficial deposits; however, in

the north of the Application Boundary, the M3 and A34 is underlain by alluvium and head deposits. Alluvium deposits of the River Itchen form a band that is crossed by the M3 and A34, within the Application Boundary, and also is located to the west of the Application Boundary. Alluvium is typically formed of unconsolidated detrital material deposited by a river or stream and comprises sorted or semi-sorted sediment within the riverbed or floodplain. This can have a variable lithology depending on the river environment and may comprise clay, silt, sand, peat or gravel. Borehole data available from the British Geological Survey (BGS) indicate that the Alluvium comprises 1 to 1.5 m of peaty silts and clays above 4.5 to 5.5 m of dense gravels (Booth, et al., 2008).

- 3.2.4 Head deposits are located beneath the north-eastern part of the Application Boundary beneath the M3 and in smaller lateral bands located north and south of the of the M3 Junction 9 roundabout (see **Figure 3.2**). To the northeast an area of the M3 crosses through superficial deposits of Head 1; this comprises clay, silt, sand and gravel, often poorly sorted and poorly stratified, formed mostly by solifluction and / or hillwash and soil creep. The smaller bands of Head are composed of clay, silt, sand and gravel that is poorly sorted and poorly stratified containing angular rock debris and clayey hillwash and soil creep that is mantling a hillslope and deposited by solifluction and gelifluction processes.
- 3.2.5 Except for a small area of Basin 3A (lined) and approximately half of Basin 5 (unlined), none of the other drainage features are shown by the BGS mapping to be underlain by superficial deposits (see **Figure 3.3**).

Figure 3.2: Superficial geology and artificial ground

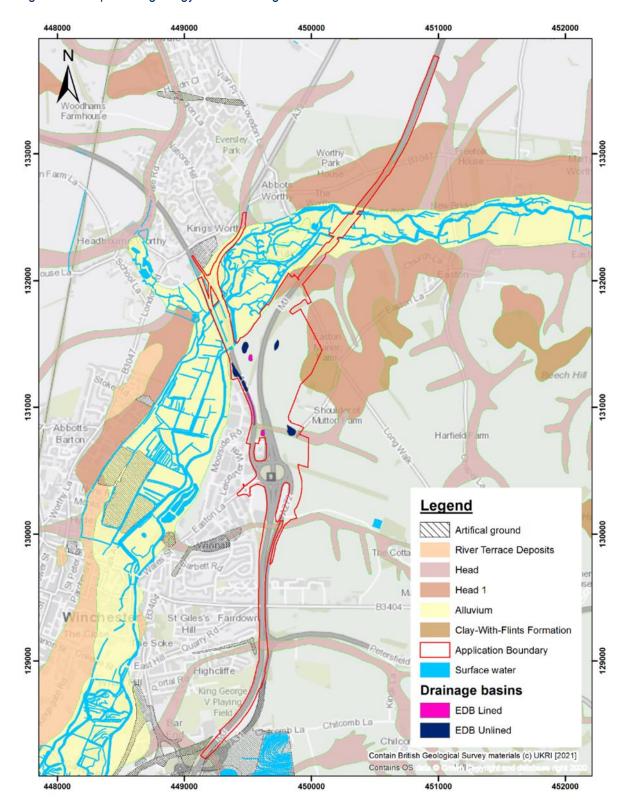


Figure 3.3: Superficial geology - central area

Soils

3.2.6 Soilscapes classifies the majority of the soils within the Application Boundary as being freely draining, shallow lime-rich soils over chalk limestone. The

agricultural land classification and soil resources report prepared for the Scheme by Reading Agricultural Consultants identifies these as being soils of the Andover 1 association (Reading Agricultural Consultants, 2021). Towards the northeast of the Application Boundary the soils become fen peat soils, classified as being Charity 2 association, which drain to local groundwater.

Underground cavities

- 3.2.7 A Cavities Risk Assessment has been undertaken as part of the **Ground Investigation Report (Document Reference 7.11).** There was one natural cavity record within 500 m of the Application Boundary, which was 10 solution pipes on the course of the River Itchen.
- 3.2.8 A summary of the Hazard ratings for each basin is given in **Table 3.2** below. The Hazard rating represents the likelihood for cavities to be present. Most basins are located in an area of Moderate-Low hazard for both natural and mining cavities which means they may occur but are unlikely. A Moderate hazard rating means that they may occur, but probably at a single location.

Table 3.2: Summary of cavities hazard for each basin (from Appendix A of the Ground Investigation Report (Document Reference 7.11))

Basin	Natural cavity hazard	Mining cavity hazard
1	Moderate-Low	Moderate-Low
2	Moderate-Low	Moderate-Low
3A	Moderate-Low and Moderate	Moderate-Low
3B	Moderate-Low	Moderate-Low
3C	Moderate-Low	Low and Moderate-Low
4	Moderate-Low and Moderate (small area)	Moderate-Low
5	Moderate and Moderate-Low (small area)	Moderate-Low
6	Moderate-Low	Moderate-Low

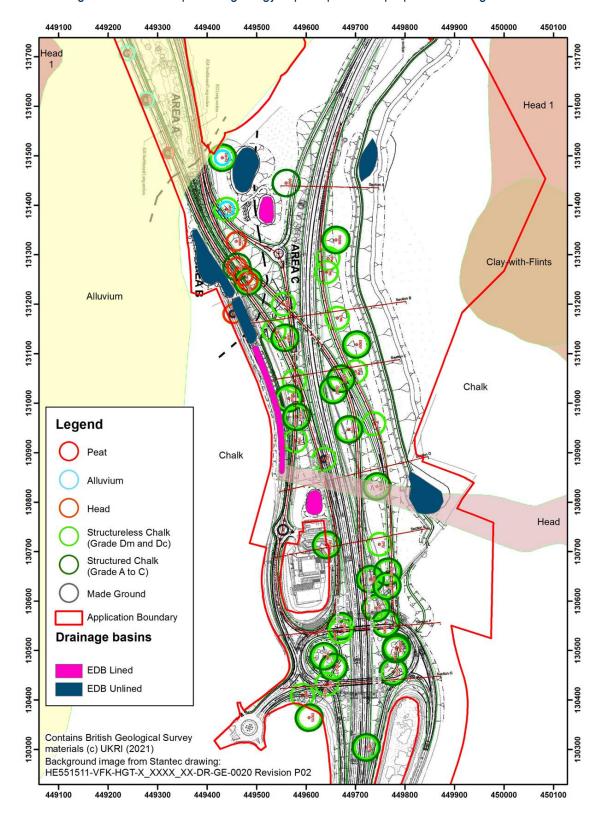
Encountered geology

- 3.2.9 The GI information is presented and reviewed in the **Ground Investigation Report (Document Reference 7.11).** A summary of the factual report of this investigation is given in **Table 3.3**. The borehole locations are shown in **Appendix C**.
- 3.2.10 The local superficial geology is shown in **Appendix D** and overlain onto Inset **Figure 3.4**.
- 3.2.11 In the central area around the drainage features, the Application Boundary is typically underlain by topsoil, Made Ground / Engineered Fill and Seaford Chalk Formation. This is in broad agreement with the publicly available BGS data.

In the central area of the Application Boundary where the EDBs are proposed, the superficial deposits extend further eastwards than indicated by BGS mapping. A summary is given below of the likely superficial geology at each of the EDBs, although it is noted that there is insufficient borehole coverage to make a detailed assessment.

- EDB1. Borehole DS203 shows that there is no superficial geology present close to this location. The EDB drains directly onto structured chalk.
- EDB2. Borehole DS112 suggests that alluvial deposits may be present under this EDB to a depth of 5 m, which is in turn underlain by structureless chalk to a depth of 6.23 m followed by structured chalk.
- EDB3A. Boreholes DS107 and DS114 and trial pits TP07 and TP09 are located to the east of this EDB. The trial pits show structureless chalk whilst the boreholes show structureless chalk to a depth of 1.2 m underlain by structured chalk.
- EDB3B. Borehole WS08 is located immediately west of the northern end of this EDB. This borehole recorded Made Ground to a depth of 5.11 m comprising predominantly white chalk recovered as silty clay with fractured flint. This is underlain by 1.89 m of head comprising a sandy, gravelly, silty clay. The base of the head deposits was not penetrated.
- EDB3C. Boreholes DS104 and DS105 and trial pit TP02 are located east of the southern end of this EDB. TP02 recorded 0.3 m of made ground comprising clayey sand. This is underlain by 3.7 m of alluvium to the base of the pit. The alluvium predominantly comprised a silty or sandy, gravelly clay. Borehole DS104 encountered made ground to 0.3 m, comprising clayey sand. This is underlain by 8.2 m of alluvium to the base of the borehole. The alluvium comprised a sandy gravelly clay with interbedded gravel. Borehole DS105 encountered made ground to 0.35 m, comprising clayey gravelly sand. This is underlain by 5.65 m of head which comprised a gravelly, silty clay. This is underlain by 2 m of structureless chalk followed by structured chalk.
- EDB4. There are no GI boreholes adjacent to this EDB. The nearest boreholes are DS217 and DS108. Both of these record structureless chalk overlying structured chalk. Given this EDBs location further to the east, it is likely that it is underlain by chalk.
- EDB5 and EDB6. No GI data in the vicinity of these EDBs, but underlying geology is likely to be chalk.

Table 3.3: Summary of lithologies encountered from Ground Investigation Report (Document Reference 7.11)


Layer	Range of depths encountered (m)	Location and brief description	
Topsoil	0.0 - 0.45	Encountered in 16 out of 53 boreholes. Grass over light- to dark- brown slightly gravelly clayey sand or sandy gravelly clay.	
Made ground / Engineered fill	0.0 - 11.35	Varied across the Application Boundary, but typically comprised tarmac, sub-base, reworked chalk, gravelly sandy clay with flint cobbles, varying concrete and brick gravel content. It is noted in the Ground Investigation Report (Document Reference 7.11) that in some areas the strata identified by Soils Limited as Made Ground may also be Engineered Fill. Engineered Fill is typically structureless chalk recovered as slightly clayey silty sandy gravel. The Engineered Fill is likely to originate from the construction of the M3, A33 and A34.	
Alluvium / Head	0.0m – 9.15,	Located in the north of the investigation area along the A34. Comprising clayey, sandy gravel with low flint cobble content, clayey gravelly sand or silty, sandy, gravelly clay. In places deposits comprised solely sands, gravels and cobbles, with the fines assumed to have been washed away. Peat was encountered as part of the alluvial deposits; this comprised firm brown mottled grey silty slightly sandy gravelly fibrous peat, with fragments of black organic material or plastic dark brown pseudofibrous peat. The Ground Investigation Report (Document Reference 7.11) has reclassified the Alluvium identified by Soils Limited as Head at some locations.	
Head	0.0 and 7.0	Located in the north of the Scheme and comprising dark brown slightly clayey gravelly sand and firm to stiff silty sandy gravelly clay. Often interbedded cohesive and granular horizons.	
Seaford Chalk	0.0 and 30.45 (base of borehole)	Consists primarily of very weak, low density white chalk recovered as gravelly silty clay; structureless silty gravel and cobbles (CIRIA Grade Dm or Dc); structureless chalk composed of slightly sandy silty gravel or clay; weak low	

Layer	Range of depths encountered (m)	Location and brief description
		density white chalk (CIRIA Grade A3 to C5) or very weak to weak low to medium density speckled chalk (CIRIA Grades A to C). Rare cobbles and gravel comprised of angular flints were also present. It is noted in the Ground Investigation Report (Document Reference 7.11) that the classification of these chalks as structured or unstructured may not be consistent.

Figure 3.4: Local superficial geology superimposed on proposed drainage

Soil contamination

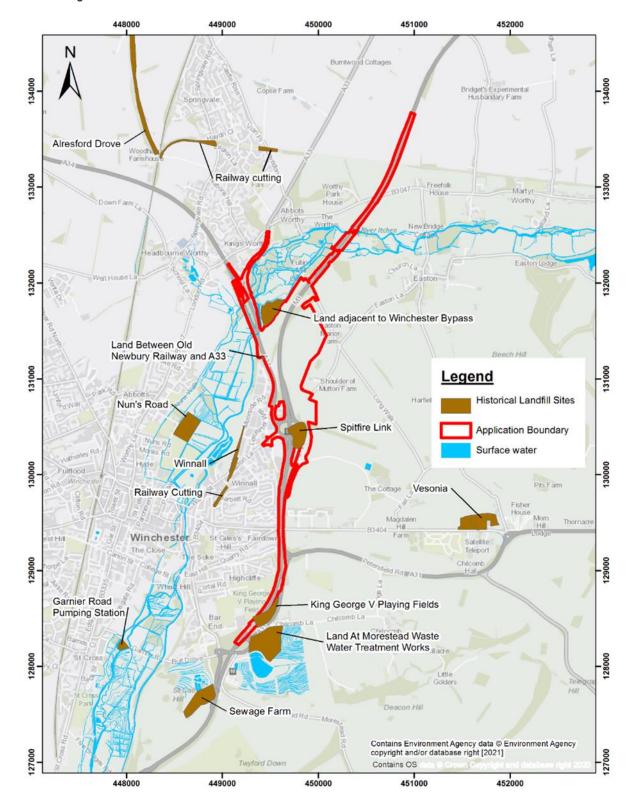
- 3.2.12 Geoenvironmental testing was carried out during the GI as detailed in the **Ground Investigation Report (Document Reference 7.11)** to determine the concentrations of contaminants of selected soil and groundwater samples. The testing suite comprised a range of heavy metals, inorganic and organic compounds, and for soils an asbestos screen.
- 3.2.13 The Ground Investigation Report (Document Reference 7.11) states that the vast majority of the soil results are below the selected assessment criteria. The exception to this is one sample out of the 126 samples tested which indicated a marginal exceedance of the Public Open Space assessment criteria for Beryllium (2.3mg/kg compared to an assessment criteria of 2.2 mg/kg). The Ground Investigation Report (Document Reference 7.11) does not consider this significant when compared to the Generic Assessment Criteria.
- 3.2.14 In addition, waste acceptance criteria (WAC) testing of 10 samples of near surface material was undertaken to allow a preliminary determination of the waste characterisation of any material to be disposed of to landfill. The results of the WAC tests analysis classify the near surface material tested as appropriate for disposal at an Inert Waste Landfill.

Infilled ground/landfilling and historical land use

- 3.2.15 Infilled ground, landfilling and other historical land uses may be sources of contamination to the water environment.
- 3.2.16 There are 13 historical landfill areas shown on Environment Agency mapping data in the vicinity of the Application Boundary. The information is summarised in **Table 3.4** and the locations are shown on Inset **Figure 3.5**. These data show there are four historical landfills within or directly adjacent to the Application Boundary:

Table 3.4 Historical landfill areas

Name	Waste type Dates active		Distance from site	Comments
Spitfire Link	No further information		On site	Soil Limited (2020) drilled six exploratory boreholes within or adjacent to the mapped boundary. No records of waste are indicated on borehole logs.
King George V Playing Fields	No further information		On site and adjacent to east	
Land adjacent to Winchester Bypass	Inert	1967-1968	Adjacent to north	Timings suggest related to Winchester Bypass widening.


Name	Waste type	Dates active	Distance from site	Comments
				Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1)
Land Between Old Newbury Railway and A33	No further information		Adjacent to west	Very small so likely to have been a commercial operation. Controlled Waters Risk Assessment Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1)
Land At Morestead Wastewater Treatment Works	Inert	1993-2001	30 m southeast	-
Winnall	Commercial and household	1969-	220 m to west	-
Sewage Farm	Commercial and household	Not provided	490 m to south	-
Railway Cutting (near to Winnall landfill)	Inert and commercial	1978-	530 m west	-
Nun's Road	Inert and Industrial	1963-	730 m to west	-
Railway cutting (two parts)	No further information		850 m to north	-
Alresford Drove	Commercial and household	Not provided	1 km northwest	-
Vesonia	Inert and commercial	1979-	1 km east	-
Garnier Road Pumping Station	Commercial and household	1910-	1.1 km west	-

3.2.17 A Controlled Waters risk assessment in **Chapter 9 (Geology and Soils)** of the **ES (Document Reference 6.1**) has identified a number of other potential

sources of contamination that are relevant to this study. These comprise a former gas works and iron works, railways, and land of mixed industrial use within or close to the Application Boundary that may also be a source of contaminants in soils.

Figure 3.5: Historical landfill areas

3.3 Hydrology

Rainfall

3.3.1 The Standard Average Annual Rainfall (SAAR) for the area around the Itchen at Easton River monitoring point (42016) is 848 mm (NRFA, 2021).

Surface water features

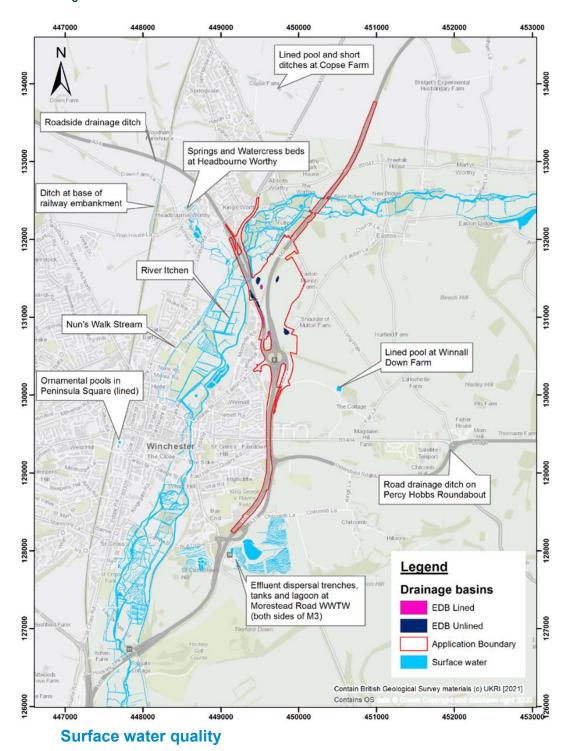
3.3.2 Surface water features in the vicinity of the Application Boundary are shown on **Figure 3.6**.

Watercourses

- 3.3.3 The River Itchen flows east to west across the northern part of the Application Boundary and then flows south to the west of the Application Boundary approximately parallel with the M3. The River Itchen is a chalk stream comprising a number of anabranches in the area around Winchester and the Application Boundary. There is also a network of ditches that are connected with the Itchen that follow the boundaries of the former water meadows within the Itchen floodplain. The Itchen is a designated Main River, with the associated floodplain designated as a SAC and SSSI. Much of the floodplain to the west of the central part of the Application Boundary is managed as the Winnall Moors Local Nature Reserve.
- 3.3.4 According to the National River Flow Archive the mean flow data of the River Itchen upstream of the Application Boundary (location 42016 Itchen at Easton) is 4.239 m3/s. Downstream of the Application Boundary (location 42010 Itchen at Highbridge and Allbrook Total) mean flow is 5.539 m3/s, implying that the River gains within the Application Boundary. Both locations show evidence of substantial surface and groundwater abstraction and the presence of cress beds and fish farms. The baseflow index (BFIHOST) at the River Itchen at Easton is 0.95, indicating that it almost entirely groundwater fed.
- 3.3.5 To the west of the River Itchen is Nun's Walk Stream, which flows parallel to the track/road of the same name and the Itchen. This is also a designated Main River. Ordnance Survey mapping indicates that Nun's Walk Stream starts around springs at Headbourne Worthy in the north and flows southwest parallel with the Itchen on a straight course and joins with an Itchen anabranch at the north end of Park Road, Winchester, south of the River Park Leisure Centre, approximately 2.5 km to the south.
- 3.3.6 In the surrounding area, there are very few water courses or water features other than the River Itchen that lie on the Chalk, and this is generally due to the high secondary porosity and permeability of the Chalk allowing rainfall to infiltrate and recharge the aquifer directly.

Waterbodies

3.3.7 There are a number of water bodies that fall within the course of the River Itchen. There are three waterbodies located on the eastern side of the Itchen



south of the Junction 9 roundabout. There is also a square pond at Winnall Down Farm (125 m from the Application Boundary, that given its shape is very likely to be manmade, and it appears from satellite imagery that it is lined.

- 3.3.8 To the south around St Catherine's Hill and Chilcomb there are many effluent dispersal trenches, tanks and a lagoon forming part of the Morestead Road Wastewaster Treatment Works. These features are both to the west and east of the M3.
- 3.3.9 There are number of fisheries and water cress ponds in the surrounding area that rely on chalk-fed water features, such as those in Headbourne Worthy, 480 m to the west of the Application Boundary. These ponds are fed by springs from the chalk. There are also watercress ponds around New Alresford, 8 km to the east of the Application Boundary and upstream on the River Itchen.

Figure 3.6: Surface water features

3.3.10 No surface water samples were taken as part of the site investigation undertaken by Soils Limited in 2019.

3.4 Hydrogeology

Groundwater classifications and systems

- 3.4.1 The Alluvium underlying the north of the Application Boundary is classified by the Environment Agency as a Secondary A aquifer, meaning it is a formed of permeable layers capable of supporting water supplies at a local rather than strategic scale, and can provide an important source of base flow to rivers.
- 3.4.2 The Head deposits are classified as Secondary Undifferentiated aquifer. These are layers for which it has not been possible to determine a permeability due to the variable characteristics of the rock type.
- 3.4.3 The Chalk Subgroup is classified by the Environment Agency as a Principal Aquifer, due to its high fracture permeability, and as such it supports water supply and river base flow on a strategic scale. The Chalk is a dual porosity aquifer with rapid flow occurring through fracture networks and slower flow through the porous matrix.
- 3.4.4 The top of the Chalk is logged as structureless chalk. Structureless chalk tends to have fewer fissures and fractures and the clayey matrix is often a barrier to groundwater flow.
- 3.4.5 The Groundwater Vulnerability maps from the Environment Agency indicates that the groundwater is of High vulnerability to pollutant discharge at the surface in areas without superficial cover and Moderate-High vulnerability in areas with superficial cover.

Groundwater Source Protection Zones (SPZs)

3.4.6 The Application Boundary lies within two overlapping groundwater Source Protection Zones (SPZ); which relate to groundwater sources that are used for public drinking water supply. The definitions of each zone are described in **Table 3.5** below. There is also another SPZ to the northwest and one to the south. The SPZs are shown on **Figure 3.14**.

Table 3.5: Outline definitions of Source Protection Zones

Zone	Outline definition (from Environment Agency website – (Environment Agency, 2019)			
Zone 1 (Inner Zone)	Defined by a 50-day travel time from any point below the water table to the source. This zone has a minimum radius of 50 metres.			
Zone 2 (Outer Zone)	Defined by a 400-day travel time from a point below the water table. This zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction. Older SPZs may have used a different methodology.			

Zone	Outline definition (from Environment Agency website – (Environment Agency, 2019)		
Zone 3 (Total Catchment)	Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.		

- 3.4.7 The SPZ in the northeast of the Application Boundary is for two Southern Water public water supply boreholes near Easton and lies mostly along the M3 north of the Application Boundary¹. Where the Application Boundary is within the SPZ it is mostly in Zone 1, with the northernmost area in Zone 2 (c. 860 m of M3).
- 3.4.8 There is also an SPZ approximately 450 m to the northwest of the Application Boundary associated with the Headbourne Worthy Watercress Beds. These beds are fed by springs. The area closest to the Application Boundary is in Zone 1 with the 'tail' of Zone 2 and 3 spreading to the northwest away from the Application Boundary.
- 3.4.9 There is another SPZ 1 km southeast of the Application Boundary which is related to further Southern Water public water supply boreholes.
- 3.4.10 The Drinking Water Groundwater Safeguard Zone (DWGSZ) for the River Itchen Chalk covers Zone 1 and 2 of the SPZ.

Aquifer properties

- 3.4.11 The Chalk exhibits both matrix flow and fracture flow and the Seaford Chalk Formation has regular orthogonal joint sets (Allen, *et al.*, 1997). The Seaford Chalk usually has high storage although not always high permeability due to the narrow apertures of the fractures (Allen, et al., 1997). Numerous fractures are identified in the chalk in borehole logs.
- 3.4.12 It is common for there to be higher permeability in chalk river valleys. Palaeogene sediments in river valleys tend to be quite acidic, enhancing dissolution (Allen, et al., 1997). Transmissivities in the Hampshire Basin area are reported in Allen *et al.*, (1997) from 0.55 to 29,000 m²/d with a geometric mean of 1,600 m²/d. Allen *et al.* (1997) note that these values are high due to higher number of tests near to rivers. Transmissivity values of 1,000 m²/d are common in the valley areas. The Candover valley, a tributary of the Itchen to the east, has transmissivities of 1,000 3,000 m²/d and a storage coefficient of 0.01-0.03. Folding tends to enhance fracturing of rocks. However, it also notes that in the axes of anticlines, such as is found here, aquifer properties are thought to be less well developed, with groundwater mounds and lower transmissivities of 100 m²/d. (Entec, 2002) within (WPK, 2007) suggest transmissivities in the Winchester Anticline are 100-600 m²/d.

¹ Note that co-ordinates are not available for the Itchen Valley PWS's near Easton.

- 3.4.13 At the Itchen Valley (Easton) Public Water Supply (PWS) to the north of the Application Boundary, transmissivities of 2,400 and 4,700 m²/d have been calculated from pumping tests (Environment Agency, 1997 within WPK, 2007).
- 3.4.14 If we assume that the transmissivity is concentrated in the top 50 m of the Chalk, then a transmissivity of 1,000 m²/d equates to a hydraulic conductivity of 20 m/d. Below 50 m, chalk fissures tend to be closed due to the mass of rock above them and yields decrease.
- 3.4.15 Variable head permeability tests were undertaken during the site investigation by Soils Limited. However, it is understood that these tests were undertaken above the water table and thus may not reflect the hydraulic conductivity of the strata tested. In the **Ground Investigation Report (Document Reference 7.11)** calculated soil infiltration rates to use as an indication for preliminary designs. Table 9.5 from the **Ground Investigation Report (Document Reference 7.11)** is reproduced here as **Table 3.6**. Based on these calculations a soil infiltration rate of 1 x 10⁻⁶ m/s was adopted for Alluvium, Head and Structured Chalk within 2 mbgl (metres below ground level), and 1 x 10⁻⁵ m/s for Structured Chalk below 2 mbgl.

Table 3.6: Calculated soil infiltration rates (from Table 9.5 in the Ground Investigation Report (Document Reference 7.11))

Location	Test depth range (mbgl)	Geology as per borehole record logs (mbgl)	Soil infiltration - calculated (m/s)	Soil infiltration(m/hr)
DS104	0 - 4	0.3 - 3.0 Sandy gravelly clay (Alluvium) 3.0 - 4.0 No description [Alluvium]	9.5 x 10 ⁻⁶	3.4 x 10 ⁻²
DS107	0 - 4	0.4 - 1.2 Structureless chalk 1.7 - 4.0 Chalk Grade B2	1.4 x 10 ⁻⁵	5.2 x 10 ⁻²
DS109	0 - 3	0.5 - 1.2 Structureless chalk 1.2 - 3.0 Chalk Grade B2	2.8 x 10 ⁻⁵	1.0 x 10 ⁻¹
DS210	0 - 4	0 - 1.7 Structureless chalk (Grade Dc) 1.7 - 4.0 Chalk Grade B2	4.2 x 10 ⁻⁶	1.5 x 10 ⁻²
DS301	5.7 - 10.15	5.7 - 7.0 Chalk Grade A3- A4 7.0 - 10.15Chalk Grade A3	1.1 x 10 ⁻⁴	4.1 x 10 ⁻¹

3.4.16 Yields in the Lewes to Portsdown Formations are typically 10.5 l/s in boreholes in the Winchester District (Booth, et al., 2008). Booth et al. also note that "rapid groundwater flows are sometimes found in the unconfined chalk aquifer where

karstic-type development has taken place. This is commonly associated with the proximity of thin cover, such as the Palaeogene deposits or clay-with-flints".

3.5 Groundwater levels and flow

Available data

3.5.1 Limited groundwater monitoring data are available. Monitoring wells were installed by Soils Limited during March and April 2019 at 23 locations and dips were taken at 13 from the installation until 15 April 2019. Four locations (DS104, DS114, DS301, DS302) were then monitored hourly using pressure transmitters and loggers for the period June 2019 to July 2020.

Groundwater levels

Dip data

- 3.5.2 Fourteen boreholes were dipped once installed and typically each day during the site investigation works by Soils Limited. The dips and levels on the final day (15th April 2019) are plotted on **Figure 3.7** and **Figure 3.8** respectively, which also shows the locations. The dip data is provided in Table 3.7 for the whole GI period (where available). These data are taken from the Soils Limited (2020) Factual Report and converted to metres above ordnance datum based on the groundwater elevations provided in the report. A number of boreholes were dry throughout the works period. These data indicate that the groundwater level across the central part of the Application Boundary is approximately 37.5 mAOD. Groundwater levels at DS208 are noticeably higher at 52.04 mAOD, which is because this borehole is screened in the Seaford Chalk at a higher elevation of 51.91-54.91 mAOD, whereas the other boreholes are screened below 30 mAOD. There is therefore a locally perched groundwater table at DS208.
- 3.5.3 Groundwater seepage was encountered during the Jacobs Application Boundary investigation at a depth of 3.10 mbgl in WS02 and 4.50 mbgl in WS03, and 7 mbgl in WS08.

Figure 3.7: Groundwater dip data from final day of installation works in mbgl

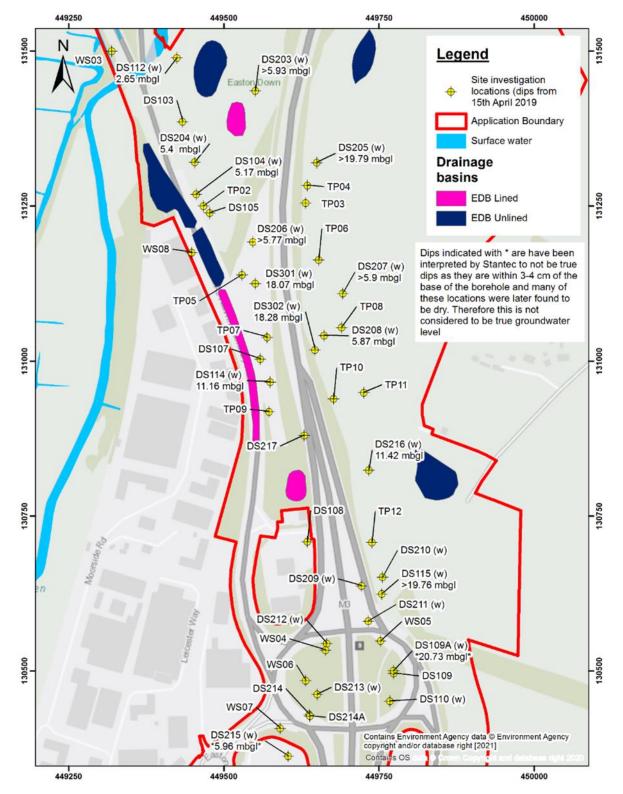


Figure 3.8: Groundwater levels data from final day of installation works in mAOD

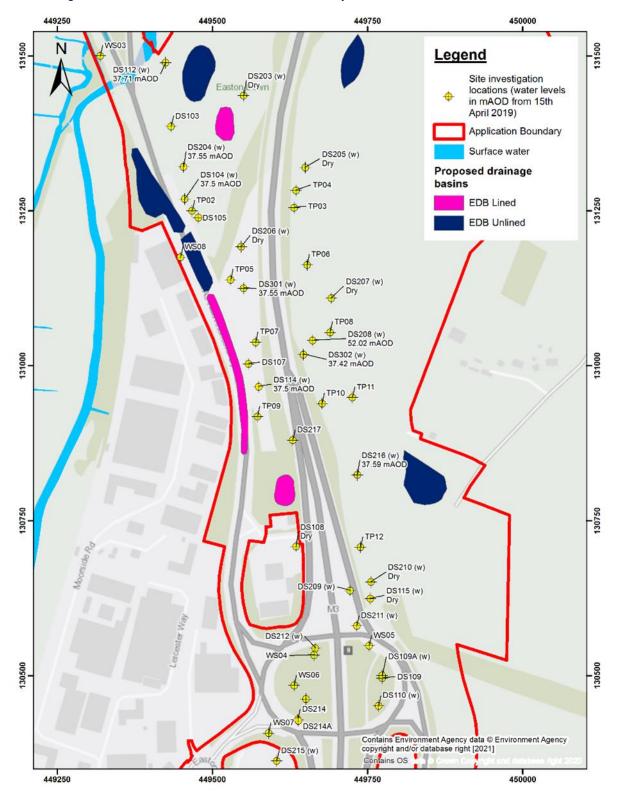


Table 3.7: Groundwater level dip data during site investigation works in mAOD

	Date	18/03/	/2019	19/03	/2019	20/03	/2019	22/03	/2019	25/03	/2019	26/03	/2019	2	7/03/201	9	28/03	/2019	01/04	1/2019
Trial Hole	Ground level (mAOD)	Water level	Base	Wate	r level	Base	Water level	Base												
DS104	42.67																			
DS112	40.36																		37.72	20.93
DS114	48.66													37.56	29.10	37	.55	29.10	37.56	29.10
DS115	62.23					Insta	alled	42.82	42.43			Dry	42.47	Dry	42.47	Dry	42.47	Dry	42.46	
DS203	57.43																			
DS204	42.95																		37.59	36.85
DS205	69.16	Dry	49.39	Dry	49.39	Dry	49.39	Dry	49.39	Dry	49.44	Dry	49.39	Dry	49.44	D	ry	49.39	Dry	49.44
DS206	56.88															Inst	alled	Dry	51.11	
DS207	64.65	Dry	58.45	Dry	58.77	Dry	58.71	Dry	58.77	Dry	58.78	Dry	58.75	Dry	58.73	D	ry	58.78	Dry	58.78
DS208	57.91	Dry	51.74	Dry	51.92	52.02	51.98	Dry	51.89	52.01	51.97	52.05	52.01	52.00	51.98	52	.05	52.01	52.04	52.02
DS210	61.41							Dry	55.63	Dry	55.63	Dry	55.62	Dry	55.62	D	ry	55.62	Dry	55.63
DS216	49.01							Insta	alled			37.64	34.28	37.47	33.96	37.65	34.29	37.48	33.98	
DS301	55.62	_				_				_				Insta	alled				37.60	<25.62
DS302	55.7			Insta	alled	37.66	<25.7	37.65	<25.7	37.76	<25.7	37.67	<25.7	37.61	<25.7	37.62	<25.7	37.63	<25.7	

(Continued on next page)

	Date	02/04	/2019	03/04	/2019	05/04	/2019	09/04	/2019	10/04/	2019	11/04	/2019	12/04	1/2019	15/04	1/2019
Trial Hole	Ground level	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base	Water level	Base
DS104	42.67	Inst	alled	37.54	27.96	37.75	28.04	37.55	27.94	37.53	27.95	37.66	28.05	37.54	27.95	37.50	27.95
DS112	40.36	37.70	20.95	37.74	21.08	37.87	20.95	37.80	20.95	37.73	21.00	37.71	21.00	37.70	20.89	37.71	21.02
DS114	48.66	37.56	29.10	37.54	29.38	37.64	29.22	37.56	29.10	48.66	48.66	37.61	29.09	37.52	29.51	37.50	29.42
DS115	62.23	Dry	42.68	Dry	42.68	Dry	42.82	Dry	42.68	Dry	42.82	Dry	42.46	Dry	42.46	Dry	42.47
DS203	57.43			Insta	alled			Dry	51.48	Dry	51.48	Dry	51.48	Dry	51.53	Dry	51.50
DS204	42.95	37.58	36.87	37.58	36.87	37.77	36.91	37.78	36.87	37.60	36.89	37.69	36.89	37.56	36.90	37.55	36.89
DS205	69.16	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.44	Dry	49.67	Dry	49.69	Dry	49.37
DS206	56.88	Dry	51.11	Dry	51.10	Dry	51.10	Dry	51.01	56.88	56.88	Dry	51.01	Dry	51.10	Dry	51.11
DS207	64.65	Dry	58.78	Dry	58.78	Dry	58.78	Dry	58.76	Dry	58.74	Dry	58.73	Dry	58.74	Dry	58.75
DS208	57.91	52.04	52.03	52.03	52.01	Dry	52.03	Dry	63.79	52.04	52.03	Dry	52.02	Dry	52.02	52.04	52.02
DS210	61.41	Dry	55.62	Dry	55.63	Dry	55.63	Dry	55.63	Dry	55.52	Dry	55.51	Dry	55.51	Dry	55.52
DS216	49.01	37.48	34.14	37.47	34.23	37.74	34.14	37.19	34.14	37.45	34.16	37.61	34.26	37.60	34.26	37.59	34.26
DS301	55.62	37.59	<25.62	<mark>44.54</mark>	<25.62	37.59	<25.62	37.60	<25.62			37.69	<25.62	37.61	<25.62	37.55	<25.62
DS302	55.7	37.78	<25.7	37.62	<25.7	37.28	<25.7	37.49	<25.7	37.64	<25.7	37.46	<25.7	37.44	<25.7	37.42	<25.7

Red text indicates that the base of the borehole extended beyond the reach of the 30 m dip tape used. Yellow highlighting indicates water levels that may be errors.

Logger data

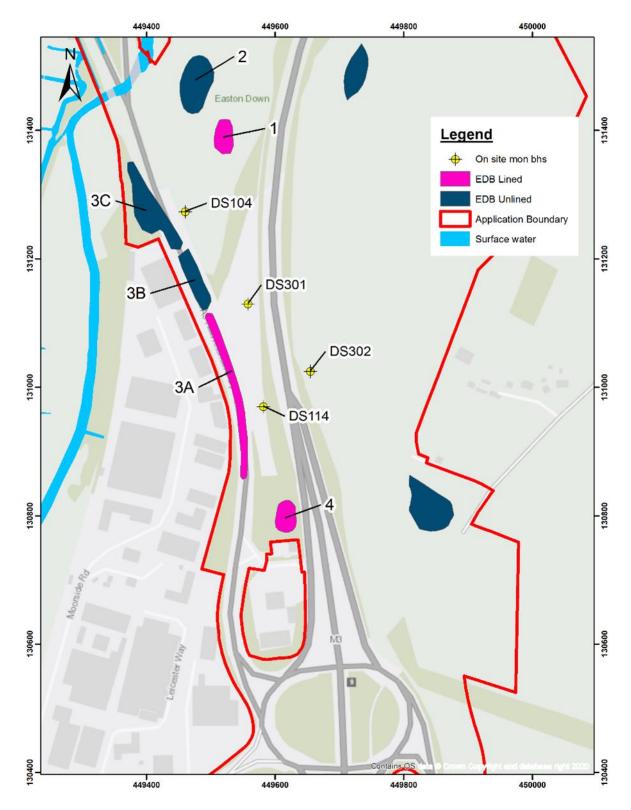

- 3.5.4 Groundwater monitoring points DS104, DS114, DS301 and DS302 are located close to the proposed drainage basins 2, 3A, 3B and 3C, as shown on Figure 3.9, and monitor the Seaford Chalk Formation. These boreholes are between 15 and 30.5 m in depth and are screened at their base within the Seaford Chalk Formation. A summary of the depths and horizons at the boreholes is given in **Table 3.8**.
- 3.5.5 These boreholes were monitored using loggers for one year from June 2019 to July 2020. The water level (in mbgl) is plotted in **Figure 3.11**. The barometrically adjusted groundwater level (in mAOD)) is plotted in **Figure 3.10**. A summary of the groundwater level is given in **Table 3.9**.

Table 3.8: Groundwater monitoring locations

Borehole	Ground level (mAOD)	Depth (mbgl)	Elevation of base (mAOD)	Screened interval (mAOD)	Geology summary
DS104	42.67	15.00	27.67	27.67- 32.60 (Seaford Chalk)	Topsoil/Made Ground 0 to 0.3 mbgl Head 0.3 to 8.5 mbgl (some core not recovered). Typically sandy gravelly clay down to 3 mbgl and variable sand, gravels, and sandy gravelly clays at depth. No recovery 8.5 to 10.00 mbgl Seaford Chalk Formation 10.00-15.00 mbgl
DS114	48.66	19.95	28.71	29.16- 32.16 (Seaford Chalk Formation)	Topsoil 0 to 0.3 mbgl Seaford Chalk Formation from 0.3 to 19.95
DS301	55.62	30.25	25.27	25.62- 30.62 (Seaford Chalk Formation)	Topsoil to 0.4 mbgl. Seaford Chalk from 0.4 to 30.25 mbgl
DS302	55.70	30.45	25.25	25.70- 30.70 (Seaford Chalk Formation)	Head from 0 to 0.27 mbgl. Head is composed of light brown slightly gravelly sandy clay. Seaford Chalk from 0.27 to 30.45 mbgl

Figure 3.9: Boreholes monitored for groundwater level

3.5.6 During the monitoring period the groundwater levels vary by approximately 2 m, with all locations showing almost identical trends. Groundwater level generally

increase gradually from June 2019 to December 2019, then rise more quickly from mid-December to February 2020 and decline from February to June 2020. Groundwater levels in DS301 and DS302 are approximately 0.3 m higher than those at DS104 and DS114. The groundwater levels range between 37.19 to 39.38 mAOD. This is the same elevation as the River Itchen and surrounding area to the west. We note that the Chalk groundwater level flow direction is likely to be towards the River Itchen (i.e. from east to west). These wells are located along an approximate north to south line (perpendicular to groundwater flow), making it difficult to assess flow directions or hydraulic gradients directly from these data.

Table 3.9: Summary of groundwater levels (June 2019 to July 2020)

Borehole	Ground	lwater leve	l (mbgl)	Groundwater level (mAOD)					
Borenoie	Minimum	Mean	Maximum	Minimum	Mean	Maximum			
DS104	3.83	4.97	5.43	37.24	37.70	38.84			
DS114	9.67	10.98	11.49	37.17	37.68	38.99			
DS301	16.41	17.68	29.21	37.43	37.94	39.21			
DS302	16.32	17.73	28.90	37.42	37.98	39.38			

Figure 3.10: Groundwater level in Application Boundary SI boreholes in the Application Boundary (mAOD)

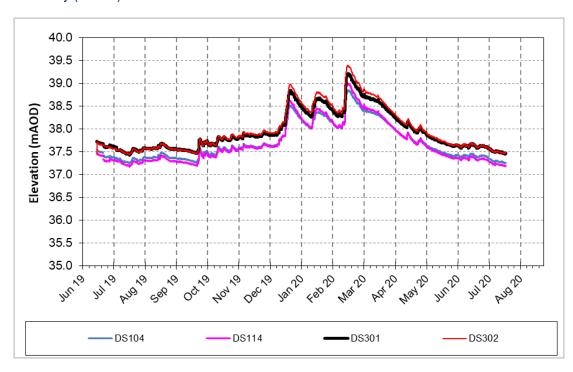
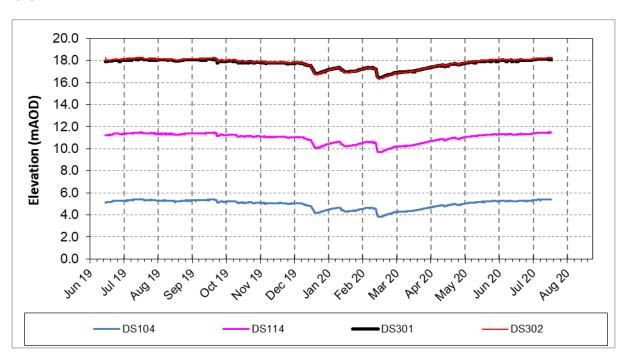



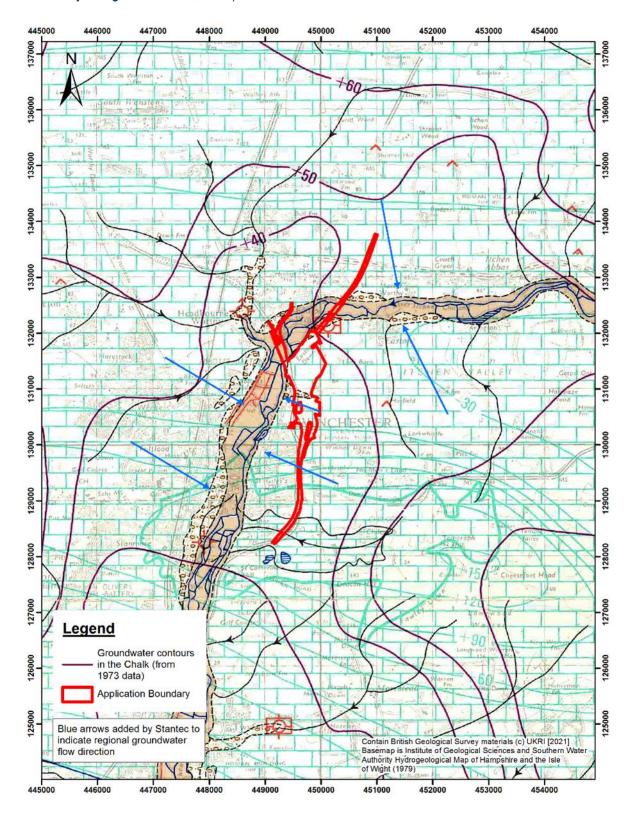
Figure 3.11: Groundwater level in Application Boundary SI boreholes in metres below ground level

Unsaturated zone thickness

3.5.7 Based on the available groundwater level data, the groundwater depth (unsaturated zone thickness) at each of the proposed EDBs can be estimated. These estimates are summarised in **Table 3.10**. Unsaturated zone thickness is based on the average groundwater level in the closest borehole to where the EDB is proposed. The logger data at four boreholes indicates that the average groundwater level over the year was 0.2 m higher than the water level recorded in April 2019 during the installation. Therefore, it has been assumed that variability is the same across all boreholes and so the average unsaturated thickness is taken to be 0.2 m smaller than was measured in April 2019.

Table 3.10: Approximate depth to groundwater at unlined EDBs

EDB	Approximate average elevation of EDB (mAOD)	Approximate average unsaturated thickness to nearest 0.1 m	Nearest borehole
1	45	7.1	DS112
2	51	13.1	DS203 DS112
3B	43.5	5.8	DS104
3C	41.5	3.8	DS104



Groundwater flow

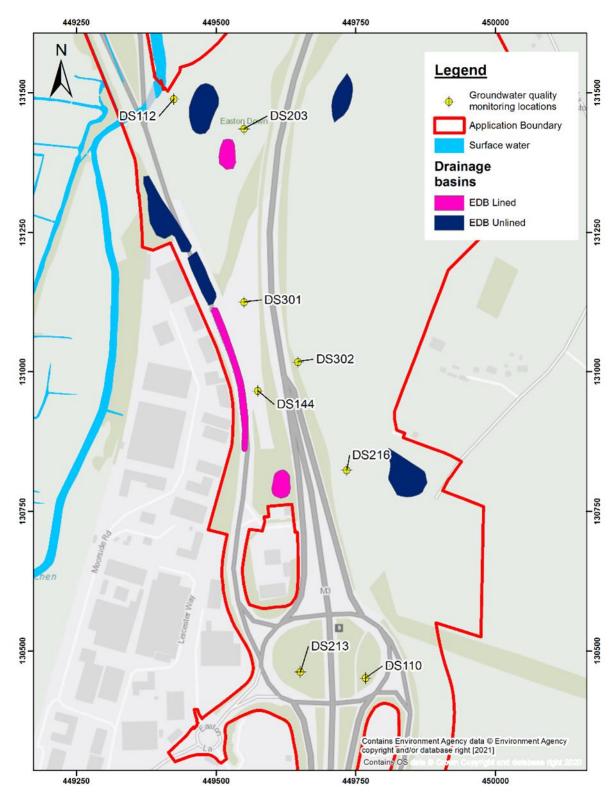
- 3.5.8 The Hydrogeology map of Hampshire and the Isle of Wight (Institute of Geological Sciences and Southern Water Authority, 1979) shows the groundwater contours in the Upper Chalk around the Application Boundary to be generally mirroring the topography and indicates groundwater flow towards the River Itchen (**Figure 3.12**). In the area of the drainage features within the Application Boundary, groundwater flows to the southwest are indicated, towards the River. These contours suggest that groundwater discharges to the River.
- 3.5.9 The shape of the SPZs indicate a southeasterly flow at Headbourne Worthy which lies on the western side of the River Itchen. The Itchen Valley abstractions near Easton draw in water from the north of the River and also from the southeast.

Figure 3.12: Application Boundary overlaid on the Hydrogeological map (Institute of Hydrological Sciences, 1979)

3.6 Contaminated land and pollution events

- 3.6.1 An Envirocheck report was obtained to inform the Preliminary Sources Study Report (WSP, 2017). Envirocheck notes there are two petrol filling stations on Easton Lane, one 7 m (Shell) from the Application Boundary and one 66 m (Tesco) away. Stantec has also been made aware by Winchester City Council that there also is a former petrol station located within the Application Boundary along the A33 (letter reference 21/01483/NSIP, dated 7th July 2021).
- 3.6.2 Pollution incidents up to 2 km away from the Application Boundary are summarised in **Table 3.11** (Envirocheck, 2016). These pollution incidents occurred between 1992 and 1999.

Table 3.11: Pollution incidents within 2km (from Envirocheck, 2016)


Distance	Number of recorded incidents	Summary of incidents			
On site	1	Poultry manure			
		Petrol poured onto ground			
0-250 m	4	LPG tanker overturned			
0-250 111	4	Mineral and synthetic oil			
		Inert suspended solids from cress beds			
251-500	2	Slurry discharge			
m	2	Inert suspended solids from farm			
		Slurry discharge			
		Milky white discharge from construction			
501-	12	Suspended solids from construction			
2000 m	12	Industrial chemicals			
		Waste oil			
		River has turned black – inert solids			

3.7 Groundwater quality

- 3.7.1 Groundwater samples were taken from eight boreholes on two occasions during the GI in 2019. The locations tested were DS110, DS112, DS114, DS203, DS213, DS216, DS301 and DS302, which are shown on **Figure 3.13**.
- 3.7.2 On each monitoring occasion, two samples were taken from DS110 at 12 mbgl and 29.5 mbgl, and one sample was taken at the other seven boreholes. Only results from one occasion are available for review by Stantec.

Figure 3.13: Groundwater quality monitoring locations

3.7.3 The Tier 2 Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1) identified one exceedance of

copper, two exceedances of mercury, one exceedance of nickel and one exceedance of zinc against the Environmental Quality Standards (EQS). Furthermore, the limit of detections (LOD) for cadmium, hexavalent chromium, copper, lead and cyanide are above the EQS. It also identified one exceedance of mercury, one exceedance of nickel and two exceedances of nitrate compared to the UK DWS (Drinking Water Standards). The nitrate exceedances were from wells sampling from the rural catchment to the east of the Scheme and the metal exceedances were from wells sampling close to historical landfills.

Table 3.12: Summary of groundwater quality data (based on data in Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1))

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Max	No. > Limit	Locations with exceedances
Arsenic	μg/l	5	50	9	5	5		
Boron	μg/l	5	-	9	14	28		
Cadmium	μg/l	0.4	0.08	9	0.4	0.4	9	All
Chromuim (Total)	μg/l	5	-	9	5	10		
Chromium Hexavalant	μg/l	20	3.4	9	20	20	9	All
Copper	μg/l	5	1	9	5	9	9	All. Detected at DS103 only
Lead	μg/l	5	1.2	9	5	5	9	All
Mercury	μg/l	0.05	0.07	9	0.05	18.3	2	DS110 (0.24) and DS203 (18.3)
Nickel	μg/l	5	4	9	5	68	9	All. Detected at DS203 only
Selenium	μg/l	5	-	9	5	5		
Zinc	μg/l	2	10.9	9	2	27	1	DS203
Ammoniacal Nitrogen as NH4	μg/l	50	260	9	50	107		
Cyanide	μg/l	5	1	9	5	5	9	All
Nitrate as NO3	μg/l	500	-	9	14300	56000		
Sulphate	μg/l	1000	-	9	6000	31000		
рН	pH Units	1	-	9	7.7	7.8		
>C5 to C6 Aliphatic	μg/l	10	-	9	10	10		

M3 Junction 9 Improvement 6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Max	No. > Limit	Locations with exceedances
>C6 to C8 Aliphatic	μg/l	10	-	9	10	10		
>C8 to C10 Aliphatic	μg/l	10	-	9	10	10		
>C10 to C12 Aliphatic	μg/l	10	-	9	10	10		
>C12 to C16 Aliphatic	μg/l	10	-	9	10	10		
>C16 to C21 Aliphatic	μg/l	10	-	9	10	10		
>C21 to C35 Aliphatic	μg/l	10	-	9	10	18		
Total Aliphatic C5-35	μg/l	70	-	9	70	70		
>C7 to C8 Aromatic	μg/l	10	-	9	10	10		
>C8 to C10 Aromatic	μg/l	10	-	9	10	10		
>C10 to C12 Aromatic	μg/l	10	-	9	10	10		
>C12 to C16 Aromatic	μg/l	10	-	9	10	10		
>C16 to C21 Aromatic	μg/l	10	-	9	10	10		
>C21 to C35 Aromatic	μg/l	10	-	9	10	10		
Benzene	μg/l	1	10	9	1	1		
Ethylbenzene	μg/l	5	-	9	5	5		
Toluene	μg/l	5	74	9	5	5		
M- & P-Xylene	μg/l	10	-	9	10	10		
O-Xylene	μg/l	5	-	9	5	5		
Total Xylene (M, P & O)	μg/l	15	-	9	15	15		
MTBE	μg/l	10	-	9	10	10		
naphthalene	μg/l	0.01	2	9	0.01	0.04		
Acenaphthylene	μg/l	0.01	-	9	0.01	0.01		
Acenaphthene	μg/l	0.01	-	9	0.01	0.01		
Fluorene	μg/l	0.01	-	9	0.01	0.01		
Phenanthrene	μg/l	0.01	-	9	0.01	0.01		
Anthracene	μg/l	0.01	0.1	9	0.01	0.01		
Fluoranthene	μg/l	0.01	0.0063	9	0.01	0.01	9	All
Pyrene	μg/l	0.01	-	9	0.01	0.01		
Benzo(a)anthracene	μg/l	0.01	-	9	0.01	0.01		
Chrysene	μg/l	0.01	-	9	0.01	0.01		
Benzo(b)fluoranthene	μg/l	0.01	0.017	9	0.01	0.01		

Analyte	Units	LOD	Fresh Water (EQS)	No. of Tests	Min	Max	No. > Limit	Locations with exceedances
Benzo(k)fluoranthene	μg/l	0.01	0.017	9	0.01	0.01		
Benzo(a)pyrene	μg/l	0.01	0.00017	9	0.01	0.01	9	All
Benzo(g,h,i)perylene	μg/l	0.01	0.0082	9	0.01	0.01	9	All
Dibenzo(ah)anthracene	μg/l	0.01	-	9	0.01	0.01		
Indeno(1,2,3- c,d)pyrene	µg/l	0.01	-	9	0.008	0.008		
Sum (benzo b, k, ghi & indeno123cd)	μg/l	0.04	-	9	0.038	0.038		

Orange highlight means LOD > EQS

Red highlight means result > EQS

3.8 Other potential receptors

Licenced water abstractions and discharges

- 3.8.1 There are multiple public groundwater abstractions to the north and south of the Application Boundary. The majority of groundwater abstractions to the north are for potable water supply, with the abstractions to the south and west primarily used for water cress production and other agricultural purposes, see Table 3.15 and **Figure 3.14**.
- 3.8.2 Given the groundwater divide at the River Itchen, the impact from the EDBs on the boreholes to the west and north of the Itchen will be negligible and are not considered further here.

Private water supplies

- 3.8.3 Winchester City Council have previously provided information on private water supply abstractions and discharges, located within a 2 km radius of the Application Boundary. It is understood that the current Application Boundary has been revised and as a result some of these supplies now fall more than 2 km from the Application Boundary.
- 3.8.4 There are nine boreholes used for private water supplies, all of which are currently active and abstract from the underlying chalk aquifer; details of these can be seen in **Table 3.13**. The locations of private water supply boreholes are shown on **Figure 3.14**. Some abstractions to the north are beyond the extent of the map and are therefore not shown.
- 3.8.5 Since all of the private water supplies are on the western and northern side of the River Itchen, up hydraulic gradient, or across hydraulic gradient at a

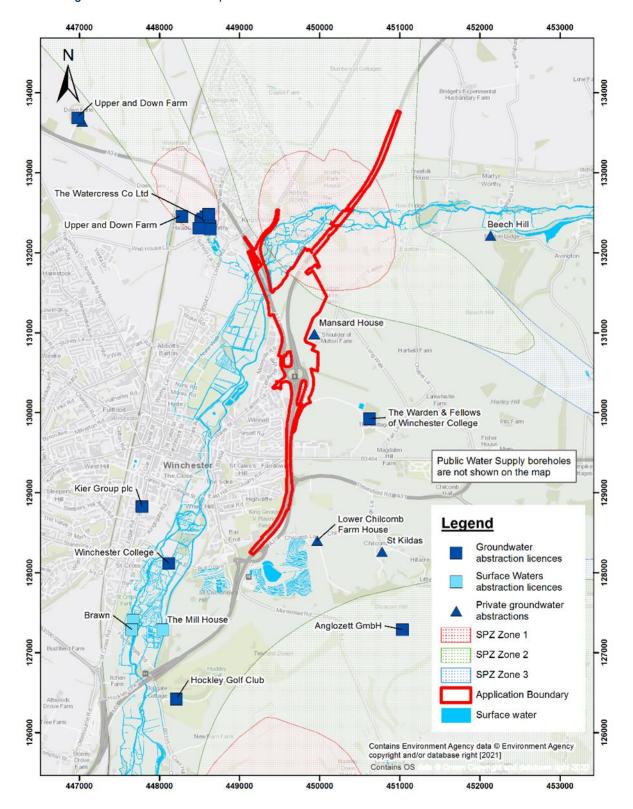

sufficient distance of the EDBs, the Scheme will have a negligible impact upon them, and they are not considered further here.

Table 3.13: Private water abstractions (within 2km of initial scheme boundary)

FID	Supply Name	Supply Number	Source Type	Source Eastings	Source Northing s	Distance from Applicati on Boundar y
Within	Application Bounda	ry				
	None					-
Identif	fied outside of the Ap	plication Bound	lary			
19	Shroner Wood	PW000123	Borehol e	451582	135626	2 km north
32	BurntwoodFarm	PW000118	Borehol e	450500	134760	1 km to north
35	Downs Farm Cottages	PW000195	Borehol e	447032	133651	2.5 km to north west
51	Mansard House	PW000120	Well	449931	130990	90 m to east
58	Shroner Hill Farmhouse	PW000122	Borehol e	450989	135290	1.5 km north
77	Beech Hill	PW000117	Borehol e	452132	132220	1.6 km to east
112	Lower Chilcomb FarmHouse	PW000186	Borehol e	449967	128403	500 m to east
133	St Kildas	PW000107	Borehol e	450776	128265	560 m to south east
136	The Beacon	PW000066	Borehol e	450992	135448	1.65 km north

Figure 3.14: Licenced and private abstractions and SPZs

Designated environmental sites

- 3.8.6 There are three designated sites within 2km of the Application Boundary, two of which are within the Application Boundary itself.
- 3.8.7 The River Itchen is a SSSI and a SAC along all of its length. The SSSI extends to the surrounding water dependent habitats and environments. Part of the River Itchen SSSI is managed as the Winnall Moors Nature Reserve to the west of the Application Boundary. The River Itchen flows south to the Solent and Dorset Coast Special Protection Area (SPA) and the Solent and Southampton Water SPA / Ramsar Site.
- 3.8.8 The South Downs National Park forms part of the eastern side of the Application Boundary and extends to the east.
- 3.8.9 Only the River Itchen SSSI is groundwater dependent.

Table 3.14: Designated Sites within 2km of the Application Boundary

Name	Designation	Description	Groundwater dependent?	Closest distance from Application Boundary
River Itchen (multiple parts)	SSSI SAC	River Itchen and surrounding land. Multiple habitats and environments. Close to site: - Fen, marsh swamp, lowland - Broadleaved mixed and yew woodland - Neutral grassland - Rivers and streams	Yes	On site
South Downs	National Park	Chalk Hills and wooded sandstone and clay hills and vales.	Not generally. None within 5 km other than River Itchen (see above).	On site
St Catherine's Hill	SSSI (Biological)	Chalk grassland scrub	No	1.4 km south
Cheesefoot Head	SSSI (Biological)	Chalk downland with horseshoe shaped dry valley, with species rich grasslands.	No	1.8 km east

Figure 3.15: Designated sites within 2 km

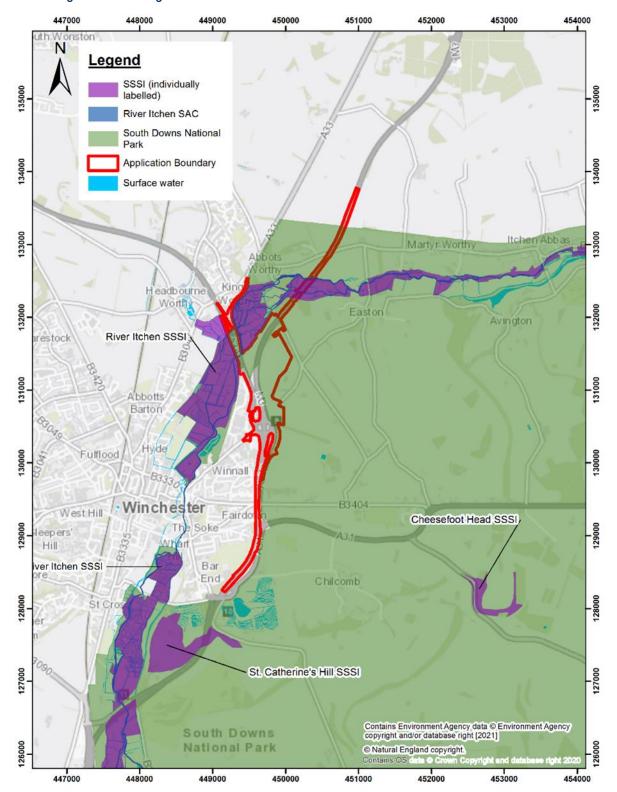


Table 3.15: Licenced groundwater and surface water abstractions

Supply Name	Supply Name		nber	Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference	
St Cross (Itchen)	31/086	23/04/1992	Aquaculture Fish	Fish Farm/Cress Pond Throughflow	Southern Region Surface Waters	-	-			SU4767274 1
Point A, Borehole At Garnier Road	SO/04 2/0031 /019	17/02/2012	Aquaculture Fish	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	HALL Itchen Chalk / LIGS			SU4811328 115	
Burntwood Farm, Martyr Worthy	11/42/ 22.5/7 6	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU5033350 1		
Hazeley Estate, Twyford	11/42/ 22.6/8 9	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		H5IT Itchen Chalk / UGS		SU5103272 9
Watercress Beds At Headbourne Worthy Point A	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU4851732 410

Supply Name		Licence num	ıber	Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference	
Watercress Beds At Headbourne Worthy Point B	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	egion H5IT Itchen Chalk / LIGS		SU4853832 428		
Watercress Beds At Headbourne Worthy Point C	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4857832 456		
Watercress Beds At Headbourne Worthy Point D	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itche	n Chalk	/UGS		SU4861432 487
Watercress Beds At Headbourne Worthy Point E	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU4862732 339
Watercress Beds At Headbourne Worthy Point F	11/42/ 22.5/1	22/02/1966	Aquaculture Plant	Fish Farm/Cress Pond Throughflow	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU4863532 303
Upper & Down Farms Point A, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU4698336 9

Supply Name			Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference		
Upper & Down Farms Point B, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r H5IT Itchen Chalk / UGS			SU4828324 6		
Upper & Down Farms Point C, Headbourne Worthy	11/42/ 22.5/7 3	23/12/1965	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4849323 1		
Point A Down Farm Hursley	31/108	22/07/2008	General Agriculture	General Farming & Domestic	Southern Region Groundwate r	H5 Chalk				SU4440266 0
St Cross, Winchester (Itchen)	SO/04 2/0031 /035	02/05/2014	Private Water Supply	Heat Pump	Southern Region Surface Waters	-				SU4765327 288
Shawford Mill Headrace (Itchen Navigation)	SO/04 2/0031 /018/R 01	21/07/2020	Electricity	Hydroelectric Power Generation	Southern Region Surface Waters	-				SU4739724 981
Carrier Channel (Itchen)	SO/04 2/0031 /002	29/01/2010	Electricity	Hydroelectric Power Generation	Southern Region Surface Waters	-				SU5365232 564

Supply Name		Licence nun	nber		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Twyford Ps Point D	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	Region H5IT Itchen Chalk / LIGS		SU4824		
Twyford Ps Point A	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU4825		
Twyford Ps Point C	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/UGS		SU4924
Twyford Ps Point B	11/42/ 22.6/9 2	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/UGS		SU4924
Itchen Valley Point D	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / LIGS		SU4932		
Itchen Valley Point A	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/ UGS		SU5032

Supply Name		Licence nun	cence number		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Itchen Valley Point C	11/42/ 22.4/8 0	26/11/1965	Public Water Supply	Potable Water Supply - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU5032		
Winnall Down Farm, Winchester	11/42/ 22.4/1 46	20/06/1977	General Agriculture	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itchen Chalk / UGS		SU5061929 927		
Hockley Golf Club	11/42/ 22.6/9 5	23/12/1965	Golf Courses	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/UGS		SU4821264 2
Hockley Golf Club	11/42/ 22.6/9 5	23/12/1965	Golf Courses	Spray Irrigation - Direct	Southern Region Groundwate r	H5IT Itche	n Chalk	/UGS		SU4821264 2
River Itchen At Shawford Park	SO/04 2/0031 /003	09/10/2009	Remedial River/Wetla nd Support	Transfer Between Sources (Post Water Act 2003)	Southern Region Surface Waters	-				SU4740724 753
Water Meadow Channel Off R Itchen	SO/04 2/0031 /010	18/10/2010	Remedial River/Wetla nd Support	Transfer Between Sources (Post Water Act 2003)	Southern Region Surface Waters	-				SU4804127 290

M3 Junction 9 Improvement 6.3 Environmental Statement - Appendix 13.2: Hydrogeological Risk Assessment

Supply Name		Licence num	Licence number		Effective date	Purpose	Use	Source	Aquifer type	National Grid Reference
Lower Itchen Navigation At Shawford	SO/04 2/0031 /020	27/03/2012	Non- Remedial River/Wetla nd Support	Transfer Between Sources (Pre Water Act 2003)	Southern Region Surface Waters	-				SU4711323 809
Wellpoints At Winchester College	SO/04 2/0032 /012	22/07/2020	Constructio n	Dewatering	Southern Region Groundwate r	egion H5IT Itchen Chalk / LIGS		SU4777928 830		

4 Conceptual site model

4.1 Sources

Carriageway drainage

- 4.1.1 Rainwater on the carriageway will wash any contaminants present into the drainage system. Contaminants may be in solution which are considered to provide an acute risk or sorbed onto solids which may present a chronic risk. The following pollutants have been identified by the HEWRAT (Highways England, 2015) as potential contaminants to receptors from road drainage schemes:
 - Microplastics and other particulate matter (from brake and tyre wear)
 - Soluble metals (copper and zinc)
 - Sediment related pollutants associated with chronic pollution impacts (total copper, zinc, cadmium, PAH - including species pyrene, fluoranthene, anthracene and phenanthrene)
- 4.1.2 The drainage system discharges into the EDBs. Prior to entry into the EDBs large items are screened out within the lined Pollution Control Device (PCD) ditches and vertical separation forebays. Within the EDBs, finer suspended sediment will settle out as flow velocities diminish. EDBs 1, 3A and 4 are sealed and will not discharge to ground. There will also be an element of attenuation as soluble heavy metals and hydrocarbons will sorb onto sediment present within the EDBs.
- 4.1.3 Discharge from the lined EDBs is to the unlined EDBs 2, 3B, 3C, 5 and 6. Within these EDBs there will be secondary attenuation, settlement and filtration within vegetated EDBs which will contain both wet and dry habitats.
- 4.1.4 We note that un-lined EDB2 and EDB3C receive direct runoff from the carriageway via lined PCD ditches and forebays.
- 4.1.5 Sediment will not infiltrate through the superficial deposits or structureless chalk. Unless, the EDBs are constructed directly over transmissive fissures, we can expect there will be no infiltration of solids, even to structured chalk. Sediment (and any entrained contaminants) will remain trapped within the forebays or EDBs and be subject to periodic removal during maintenance events. Thus, it is contaminants that are directly soluble or that leach from the sediments within the EDBs that form the potential source of contamination for groundwater.

Placement of potentially contaminated materials via cut and fill operations

- 4.1.6 It is expected that much of the material excavated under the Scheme will be reused as fill material to bring areas up to required levels. It is noted that a significant volume of material is required to raise levels in the eastern part of the Scheme.
- 4.1.7 As detailed in Section 3.2.2 this material may contain a proportion of Made Ground from previous road schemes.

Other sources of contamination

4.1.8 There are a number of potential sources of contamination within and adjacent to the Application Boundary. These include landfills, a former gasworks and ironworks, petrol stations, railways and land with mixed industrial use. Rainwater passing through these sources has the potential to leach contaminants into the groundwater.

4.2 Pathways

Unsaturated zone

- 4.2.1 Where the EDBs and retained highway soakaways are un-lined, they have the potential to discharge to ground. Site specific soil infiltration rates are presented in Section 3.4.3. On the basis of these limited data a maximum soil infiltration rate of 1 x 10-6 m/s was adopted for Alluvium, Head and Structured Chalk within 2 mbgl, and 1 x 10-5 m/s for Structured Chalk below 2 mbgl.
- 4.2.2 The other sources of contamination, including re-used material, may be located on superficial deposits or directly on the Chalk. Either way, contaminants will have to pass through the unsaturated zone to the water table.
- 4.2.3 Rainfall is estimated as 806 mm/a which represents a long-term average infiltration rate to the EDBs. So long as the unsaturated zone hydraulic conductivity is higher than this, recharge to the water table will occur. During storm events, when the EDBs become saturated, the infiltration rate could rise to a maximum rate that will be limited by the hydraulic conductivity of the underlying strata. However, such high infiltration rates will be relatively short lived as excess water within the EDBs will drain to surface water and it is expected that the EDBs will be dry for most of the time.
- 4.2.4 Within the unsaturated zone contaminant attenuation may occur. Attenuation comprises retardation and degradation processes. Heavy metals may be retarded via sorption. There are a number of mechanisms that control metal sorption which is often influenced by soil pH and redox conditions. Where sorption occurs due to cation exchange, the degree of sorption is influenced by the concentration gradient between the soluble contaminant and the solid matrix. If a more dilute flux subsequently passes through the unsaturated zone,

contaminants may de-sorb back into solution. Organic compounds, such as PAHs, adsorb onto clay particles and the sorption rate is largely controlled by the fraction of organic carbon present. Whilst this may be significant in alluvial material, chalk tends to have very low organic carbon contents and as such retardation may be limited. Organic compounds may also bio-degrade within the unsaturated zone.

Saturated zone

- 4.2.5 Once the contaminants reach the water table, they will migrate within the receiving groundwater, down the hydraulic gradient. Whilst the superficial deposits and structureless chalk may be saturated and act as contaminant transport pathways, contaminant transport will be greatest within fissures and fractures within the structured chalk.
- 4.2.6 Whilst it is possible that attenuation processes may occur during transport within fissured chalk, they tend to be relatively insignificant. The most likely process is diffusion from the fissure into the chalk matrix, which effectively retards contaminant migration within the Chalk. Given the difficulties in parameterising this process, it has conservatively been ignored for this assessment.
- 4.2.7 Estimating the volumetric flux in fissured chalk is difficult. Transmissivity data provides a weighted average of hydraulic conductivity in fissures and matrix and applying this across the entire chalk body provides a reasonable dilution estimate. However, in order to determine realistic travel times, it is often necessary to utilise very low effective porosity values. This latter parameter effectively determines the proportion of the chalk that is present as fissures where travel times can be very fast.
- 4.2.8 Based on the published chalk groundwater contours, the flow direction within the chalk is assessed as follows.
 - Areas occupied by the EDBs and retained highway soakaways is to the southwest, towards the River Itchen
 - Areas within the Itchen Valley (near Easton) PWS SPZ is to the northwest towards the PWS

Receptors

- 4.2.9 For the purposes of this assessment, the following receptors have been assessed.
 - The water table is the receptor for Hazardous substances
 - A distance of 50m from the Application Boundary is taken to be the receptor for non-hazardous pollutants

5 Groundwater Impact Assessment

5.1.1 The impact to groundwater from the developments in the Application Boundary has been assessed using the methodology outlined in Section 9.4 of the Preliminary Environmental Information Report (PEIR) (Stantec, 2021) and is detailed in **Table 5.1**. The receptor for all potential sources of contamination is groundwater.

5.2 Road drainage

5.2.1 The impact assessment has determined that, without mitigation, the road drainage has the potential to cause a significant impact (Moderate, Large or Very Large) on the groundwater receptor. To mitigate against the potential impacts, a DQRA will be undertaken to investigate the impact of the EBDs on the groundwater quality. This involves modelling of the EDBs following the Environment Agency Remedial Targets Methodology (RTM) approach. The findings of this modelling are provided in Section 6.3.

5.3 Filled areas

5.3.1 Soil samples from the Application Boundary were subject to geoenvironmental testing as detailed in the **Ground Investigation Report (Document Reference 7.11).** A comparison was made of the results to Generic Assessment Criteria which showed that the soils would not pose a hazard to human health. Water samples were also subject to testing. The water samples would contain any contaminants that have leached from the soils and are detailed in Section 3.4.6. These results were compared to EQS and DWS limits as part of a controlled waters risk assessment in **Chapter (Geology and Soils)** of the **ES (Document Reference 6.1)** which concluded that the risk to controlled waters was low.

Table 5.1: Summary of impacts

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
Unlined EDBs 2, 3B & 3C	Groundwa ter	Unsaturated zone / saturated zone	Moderate (HEWRAT assessment is medium / high)	High	Moderate or Large	Yes – EBDs (the embedded mitigation) will prevent infiltration of solids and will sorb some contaminants. Further sorption and attenuation will occur in the unsaturated zone. It is demonstrated in the DQRA detailed in the next section that impacts are minor.

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
Unlined EDBs 5 & 6	Groundwa ter	Unsaturated zone / saturated zone	Predominantly receive runoff from rural catchments to east of Application Boundary. – Negligible	High	Slight	N/A
Fill areas	Groundwa ter	Unsaturated zone / saturated zone	Soil and water testing on samples has shown no risk to human health or controlled waters. Negligible	High	Slight	N/A
Old petrol station	Groundwa ter	Unsaturated zone / saturated zone	Negligible	High	Slight	Investigation to determine if any tanks or residual contaminants in the ground
Operatio nal petrol stations	Groundwa ter	Unsaturated zone / saturated zone	Negligible as any issues would be rapidly identified and remediated by	High	Slight	N/A

Source of Impact	Receptor	Pathways	Magnitude of impact	Value (sensitivity) of receptor/ resource	Potential degree of impact	Potential degree of impact following further assessment
			petrol station operator			
Historica I land contami nation	Groundwa ter	Unsaturated zone / saturated zone	Negligible as assessed by Controlled Waters Risk Assessment in Chapter 9 (Geology and Soils) of the ES (Document Reference 6.1)	High	Slight	N/A
Historica I pollution events	Groundwa ter	Unsaturated zone / saturated zone	Negligible as short- lived events unlikely to cause gross contamination of groundwater	High	Slight	N/A

6 Detailed Quantitative Risk Assessment for EDBs

6.1 Introduction

- 6.1.1 Section 5 has identified a potential impact from the un-lined EDBs No's 2, 3B and 3C. The EDBs have been subject to a HEWRAT screening assessment. The results of the screening assessment are that all but one of the currently proposed EDBs have a 'medium risk' to groundwater and one has a high risk.
- 6.1.2 In accordance with the National Highways methodology these have been taken forward to a DQRA in order to provide a more robust assessment of the risk to the Chalk groundwater from these potential sources of contamination.
- 6.1.3 The DQRA follows the Remedial Targets Methodology (RTM) (Environment Agency, 2006). A Level 1 and Level 2 Assessment has been undertaken.
- 6.1.4 A Level 1 Assessment considers processes within the source term. For the acute source term, there is no process operating within the source term and the predicted concentrations will equal the source term concentrations. For the chronic source term, partitioning of the contaminants between soil and aqueous phase within the source term is taken into account and the estimated aqueous concentration is limited by the contaminants pure phase solubility.
- 6.1.5 A Level 2 Assessment considers attenuation processes within the unsaturated zone and dilution within the saturated zone. The input to the RTM is source concentrations for acute and chronic risk based on HEWRAT Step 2 output (i.e. representative concentrations within the EDBs). The output from the model is predicted concentrations at the identified groundwater receptors. These predicted concentrations are compared to receptor Target Concentrations. If the predicted concentration is lower than the Target Concentration, we conclude that the EDBs do not pose a risk to groundwater. Conversely, if they are higher, we conclude that they may pose a risk.
- 6.1.6 Modelling is undertaken using Stantec's (formally ESI) Risk Assessment Model (RAM) software (ESI, 2008). Electronic copies of the models are given in Appendix E.
- 6.1.7 The RAM software package, together with a number of groundwater risk assessment tools, has been benchmarked by ESI for the Environment Agency (ESI, 2001). Additionally, the equations used in RAM have been verified by comparison between direct evaluation of an analytical solution and the semi-analytic transform approach applied for more complex pathways, and by comparison with published solutions used for verification as part of the nuclear waste industry code comparison exercise INTRACOIN (Robinson & Hodgkinson, 1996).

6.2 Model Parameterisation

6.2.1 In the model, it is conservatively assumed that the EDBs are saturated for 50% of the year i.e. that the EDBs contain water for 6 months in each year and are dry of 6 months. During periods when the EDBs are saturated, the infiltration rate is limited to the maximum infiltration rate of the receiving strata. For the remaining 6 months of the year, it is assumed that there is no infiltration. The maximum infiltration rates are presented in **Table 6.1** and these rates are multiplied by 0.5 in the model to derive a conservatively appropriate annual average infiltration rate.

Table 6.1 Infiltration rates

Basin	Underlying geology	Infiltration rate into top of unsaturated zone (m/s)	Justification for infiltration rate
2	Alluvium, structured chalk,	1 x 10 ⁻⁶	
3B	Made Ground and head (base not penetrated)	1 x 10 ⁻⁶	Calculated infiltration rate from Ground Investigation Report (Document Reference 7.11) for
3C	Made Ground, alluvium, structureless chalk and structured chalk.	1 x 10 ⁻⁶	sediments

6.2.2 The source geometry for each of the EDBs is given in **Table 6.2**. The area and width perpendicular to groundwater flow has been measured from GIS. The length is then obtained by dividing the width into the area. A sediment thickness of 1 m is assigned in order to estimate a volume.

Table 6.2: Source geometry

EDB	Parameter	Values	Units	Justification			
AII	Thickness	1	m	Parameter not used in model as a constant source (rather than declining source) assumed			
	Area 1351 m ²		m ²	Measured from GIS			
2	Width 55 m groun		m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length 24.6 m		m	Calculated from area divided by the width			
	Area 2,046 m ²		m ²	Measured from GIS			
3B	Width	93	m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	22	m	Calculated from area divided by the width			
	Area	4,205	m ²	Measured from GIS			
3C	Width	150	m	Indicative measured width perpendicular to groundwater flow from plans (assumed to be rectangular in model)			
	Length	28	m	Calculated from area divided by the width			

- 6.2.3 Chronic source term concentrations are taken from the HEWRAT Step 2 output (i.e. representative concentrations within the EDBs) (Table 6.3). These represent soil concentrations within the sediments at the base of the EDBs. Following the RTM methodology, these are converted into aqueous concentrations on the basis of partitioning coefficients for solid and aqueous phases (Table 6.5) and the resulting aqueous concentration is limited by the contaminant solubility (Table 6.6). Acute source term concentrations are taken directly from HEWRAT Step 2 output (Table 6.4).
- 6.2.4 The attenuation parameters (**Table 6.5**) are also assigned for sorption within the unsaturated zone.

Table 6.3: Chronic Source terms (from HEWRAT)

		Sediment concentrations from HEWRAT assessment – 95 th percentile (mg/kg)									
EDB	Copper	Zinc	Cadmium	Pyrene	Fluoranthene	Anthracene	Phenanthrene				
2	968	3569	2	9.729	9.335	0.596	2.632				
3B	1875	7101	3	9.729	9.335	0.596	2.632				
3C	1875	7101	3	9.729	9.335	0.596	2.632				

Table 6.4: Acute source term concentrations (from HEWRAT – 95th percentile (mg/l))

EDB	Copper	Zinc
2	0.069	0.255
3B	0.145	0.797
3C	0.145	0.797

Table 6.5: Attenuation parameters

Determinant	Parameter	Value	Units	Justification
Copper	Partition coefficient (Kd)	13,770	l/Kg	Mid-point of LandSim help
	Half life	No decay		-
Zinc	Partition coefficient (Kd)	301	l/Kg	Mid-point of LandSim help
	Half life	No decay		-
Cadmium	Partition coefficient (Kd)	751	l/Kg	Mid-point of LandSim help
	Half life	No decay		-
Pyrene	Partition coefficient (Koc)	6.8 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	1,925	days	Longest half life in Dallas et al (1999)
Fluoranthene	Partition coefficient (Koc)	4.91 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	462	days	Longest half life in Dallas et al (1999)

Determinant	Parameter	Value	Units	Justification
Anthracene	Partition coefficient (Koc)	2.35 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	365	days	Abiotic degradation rate Verschueren (2001)
Phenanthrene	Partition coefficient (Koc)	2.09 x 10 ⁴	l/Kg	USEPA (1999)
	Half life	730	days	Abiotic degradation rate Verschueren (2001)

Table 6.6: Solubility parameters

Determinant	Solubility (mg/l)	Unit	Justification
Copper	2.93 x 10 ⁵	mg/l	ConSim
Zinc	6.06 x 10 ⁵	mg/l	ConSim
Cadmium	6.51 x 10 ⁵	mg/l	ConSim
Pyrene	0.137	mg/l	USEPA (1999)
Fluoranthene	0.232	mg/l	USEPA (1999)
Anthracene	0.0537	mg/l	USEPA (1999)
Phenanthrene	1.28	mg/l	USEPA (1999)

6.2.5 The Target Concentrations are defined as follows (**Table 6.7**):

- Hazardous substances: UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided (UKTAG, 2016)
- Non-hazardous pollutants: UK DWS taken from the 2016 Regulations, or 1989 Regulations as detailed in Table 6.7

Table 6.7: Target concentrations

Parameter	Value	Units	Justification	
Copper	2	mg/l	Non-hazardous pollutant. The Water Supply (Water Quality) Regulations 2016	
Zinc	5	mg/l	Non-hazardous pollutant. Water Supply (Water Quality Regulations) 1989	

Parameter	Value	Units	Justification		
Cadmium	5 x 10 ⁻	mg/l	Non-hazardous pollutant. The Water Supply (Water Quality) Regulations 2016		
Pyrene	5 x 10 ⁻	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.		
Fluoranthene	5 x 10 ⁻	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.		
Anthracene	5 x 10 ⁻	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided.		
Phenanthrene	5 x 10 ⁻	mg/l	Hazardous substance. UKTAG Concentrations in groundwater below which the danger of deterioration in the quality of the receiving groundwater is avoided for benzo(a)pyrene.		

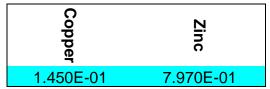
- 6.2.6 Hydrogeological parameters are presented in **Table 6.8**. The Structured Chalk hydraulic conductivity and hydraulic gradient are used, along with the cross-sectional area, to calculate the groundwater flux. The groundwater flux is used to dilute non-hazardous pollutants.
- 6.2.7 The hydraulic conductivity of the fissured Chalk is likely to be significantly higher than the value of 1x10-5 m/s assigned in **Table 6.8** and, based on the data presented in Section 3.4.3, a value of between 1x10-5 m/s and 1x10-3 m/s may be more plausible. However, by using the value at the lower end of the plausible range, a conservative estimate for dilution is derived.
- 6.2.8 The effective porosity of the saturated zone is used to estimate travel times. For a Level 2 assessment only dilution is considered in the saturated zone, not attenuation, and so the travel time is for information only.

Table 6.8: Hydrogeology parameters

Parameter	Value	Unit	Justification
Hydraulic conductivity of Structured Chalk (saturated zone)	1 x 10 ⁻⁵	m/s	Calculated infiltration rate from Ground Investigation

Parameter		Value	Unit	Justification
				Report (Document Reference 7.11).
Hydraulic gra	ndient	0.0076	-	Based on topography in the area around the EDBs. From Lidar data
Effective	Unsaturated zone	0.1		Conservative assumption
porosity of aquifer	Saturated zone	0.01		Conservative assumption to ensure rapid travel time within fissured strata.
	EDB 1	7.1	m	Based on average groundwater levels (see Error! Reference source n ot found.) and average elevation of EDB location
Unsaturated	EDB 2	13.1	m	Based on average groundwater levels (see Error! Reference source n ot found.) and average elevation of EDB location
zone thickness	EDB 3B	5.8	m	Based on average groundwater levels (see Error! Reference source n ot found.) and average elevation of EDB location
	EDB 3C	3.8	m	Based on average groundwater levels (see Error! Reference source n ot found.) and average elevation of EDB location
Fraction of or alluvial depos	rganic carbon – sits	0.01	-	Assumption of 1%
	rganic carbon – Chalk deposits	0.001	-	Chalk has little organic carbon, so assigned 0.1%.
Unsaturated :	zone bulk density	2,385	kg/m³	Estimated based on particle density of 2,650 and porosity of 0.1 (Freeze & Cherry, 1979)
Mixing depth		5	m	10 % of the travel distance (50 m)

6.3 Model Results

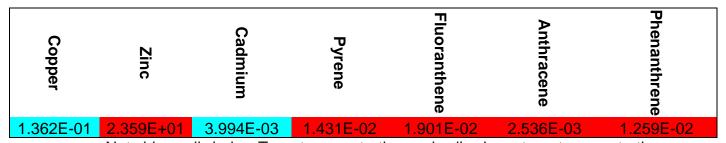

Level 1 Assessment

6.3.1 As detailed in **Section 6.1**, a Level 1 assessment considers processes operating within the source term.

Acute pollution from soluble contaminants

6.3.2 There are no processes operating in the source term for the acute source term. In this case an aqueous source term is considered, and these concentrations are compared directly with the Target Concentrations. The model has been run for EDBs 3B and 3C which have the highest source term concentrations. The predicted concentrations given in **Table 6.9** are the same as the source term concentrations given in **Table 6.4**. These concentrations are lower than the target concentrations given in **Table 6.7**. Thus, we conclude that the risk to groundwater from acute pollution within the EDBs is not significant.

Table 6.9: EDB2 Predicted concentrations (mg/l)



Note blue cells below Target concentration, red cells above target concentration

Chronic pollution from sediments

6.3.3 For the chronic source term, following partitioning between the solid and aqueous phases within the EDB sediment, and limited by the pure phase solubility, **Table 6.10** shows that there is a predicted impact from zinc and all four PAH compounds. These determinants are therefore taken forward to the Level 2 assessment.

Table 6.10: EDB2 Predicted concentrations (mg/l)

Note blue cells below Target concentration, red cells above target concentration

Level 2 Assessment – chronic pollution

EDB 2

6.3.4 EDB 2 is located on alluvium overlying structured Chalk and it is estimated that the unsaturated zone thickness at this location is 13.1 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.11**).

Table 6.11: EDB2 Predicted concentrations (mg/l)

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
100	2.134E-03	1.202E-21	4.616E-32	6.259E-26	4.661E-17

Note blue cells below Target concentration, red cells above target concentration

EDB 3B

6.3.5 EDB 3B is located on Made Ground and Head deposits and it is estimated that the unsaturated zone thickness at this location is 5.8 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.12**).

Table 6.12: EDB3B Predicted concentrations (mg/l)

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	4.616E-27	0.000E+00	0.000E+00	1.187E-27	5.555E-23
100	4.206E-01	4.070E-13	1.730E-21	1.019E-17	1.276E-11

Note blue cells below Target concentration, red cells above target concentration

EDB 3C

6.3.6 EDB 3C is located on Made Ground, Alluvium and Structureless Chalk deposits and it is estimated that the unsaturated zone thickness at this location is 3.8 m. The model predicts that no hazardous substances would be predicted to reach the water table at concentrations in excess of the Target Concentration and that there is no pollution by non-hazardous pollutants within 100 years (**Table 6.13**).

Table 6.13: EDB3C Predicted concentrations (mg/l)

Time(years)	Zinc	Pyrene	Fluoranthene	Anthracene	Phenanthrene
0.1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	4.103E-17	0.000E+00	1.766E-34	7.760E-20	4.866E-16
100	3.338E+00	1.448E-10	1.711E-17	1.274E-14	1.393E-09

Note blue cells below Target concentration, red cells above target concentration

Sensitivity analysis

6.3.7 In order to demonstrate model sensitivity to key parameters, the EDB 3B base case model has been selected. We note that similar relative changes in predicted concentrations would be found for all the models and thus it is only necessary to run sensitivity analysis on one of the EDB models.

Fraction of organic carbon

6.3.8 The fraction of organic carbon is decreased by an order of magnitude from 0.01 to 0.001. The effect of this is to decrease retardation of organic compounds in the unsaturated zone by an order of magnitude, which allows less time for degradation to occur. Model results (Table 6..14) show that decreasing the fraction of organic carbon results in predicted concentrations rising by many orders of magnitude which demonstrates that the model is sensitive to this parameter. Pyrene and phenanthrene concentrations are predicted to be higher than the Target Concentration. Note that metals are not assessed as the model does not use fraction of organic carbon to estimate metal retardation rates.

Table 6.14: Sensitivity run 1: fraction of organic carbon (mg/l) at 100 years

	Target concentration	0.01 (base case)	0.001 (sens run 1)
Pyrene	5.000E-06	4.070E-13	8.102E-05
Fluoranthene	5.000E-05	1.730E-21	2.697E-07
Anthracene	5.000E-05	1.019E-17	8.754E-07

	Target concentration	0.01 (base case)	0.001 (sens run 1)
Phenanthrene	5.000E-06	1.276E-11	1.517E-04

Concentrations given in bold exceed the Target Concentration

Infiltration rate

- 6.3.9 In the base case model, the superficial strata hydraulic conductivity is assumed to be limiting the infiltration rate when the EDBs are full of water, and it is further considered that the EDBs are full of water for 50% of each year. For this sensitivity run, it is assumed that the EDBs are full of water for 100% of the year i.e. the infiltration rate is solely limited by the unsaturated zone hydraulic conductivity.
- 6.3.10 Model results (**Table 6.15**) shows that increasing the infiltration rate increases predicted concentrations. The reason for this is twofold. Firstly, for hazardous substances, the contaminants spend a shorter period within the unsaturated zone where they degrade. The retarded travel time non-hazardous pollutants through the unsaturated zone is decreased.
- 6.3.11 Secondly, for non-hazardous pollutants, the greater flux through the unsaturated zone results in a decrease in dilution applied at the water table.
- 6.3.12 The results show that the PAH compounds remain well below the Target Concentrations, but zinc is predicted to slightly exceed it.

Table 6.15: Sensitivity run 2a: infiltration rate and unsaturated zone hydraulic conductivity (mg/l) at 100 years

	Target concentration	50% (base case)	100% (sens run 2a)
Zinc	5.000E+00	4.206E-01	7.894E+00
Pyrene	5.000E-06	4.070E-13	2.678E-09
Fluoranthene	5.000E-05	1.730E-21	2.359E-15
Anthracene	5.000E-05	1.019E-17	5.761E-13
Phenanthrene	5.000E-06	1.276E-11	1.691E-08

Concentrations given in bold exceed the Target Concentration

Unsaturated zone thickness

- 6.3.13 For EDB 3B, the unsaturated zone has been estimated at 5.8 m thick. For this sensitivity run, the unsaturated zone thickness has been increased by 5 m to 10.8 m.
- 6.3.14 Model results (**Table 6.16**) show a decrease in concentrations for all contaminants. This is due to the longer travel time within the unsaturated zone pathway segment resulting in longer breakthrough times. We note that the maximum concentration (at any time) for the PAH compounds is reduced as the

longer time spent in the unsaturated zone provides more time for degradation. For zinc, however, which does not degrade, breakthrough would eventually occur to the same concentrations as in the base case model.

Table 6.16: Sensitivity run 3: unsaturated zone thickness (mg/l) at 100 years

	Target concentration	5.8 m (base case)	10.8 m (sens run 3)
Zinc	5.000E+00	4.206E-01	1.535E-03
Pyrene	5.000E-06	4.070E-13	5.244E-19
Fluoranthene	5.000E-05	1.730E-21	3.758E-29
Anthracene	5.000E-05	1.019E-17	1.144E-23
Phenanthrene	5.000E-06	1.276E-11	1.475E-15

7 Conclusions and recommendations

7.1 Conclusions

- 7.1.1 There are a number of potential sources of contamination within and adjacent to the Application Boundary. These include landfills, a former gasworks and ironworks, petrol stations, railways and land with mixed industrial uses. On the basis of the soil and water quality data obtained to date by the Scheme, these potential sources have been assessed as detailed in a Controlled Waters Risk Assessment in **Chapter 9 (Geology and Soils)** of the **ES (Document Reference 6.1)** and it was concluded that the potential for significant contamination to groundwater from these sources is low.
- 7.1.2 Some material will need to be excavated as part of the Scheme. It is envisaged that all this material will be used to raise levels along the eastern side of the Application Boundary and that there will be no surplus material from the Scheme.
- 7.1.3 GI has shown that there is a significant quantity of Made Ground within the Application Boundary, which is probably associated with previous road scheme construction.
- 7.1.4 On the basis of the soil and water quality data obtained to date by the Scheme, it is considered unlikely that placement of excavated material to raise levels will result in significant mobilisation of contamination. Thus, whilst no significant risk to human health or controlled waters is currently assessed for the in-situ materials, it is also considered that there will be no significant risk following excavation and placement.
- 7.1.5 The most significant risk to groundwater from the Scheme is considered to be the road drainage. Considerable thought has been put into designing an upgraded road drainage system, with as much drainage as possible captured and discharged to the EDBs. Where levels permit, discharge is routed first to a lined EDB for initial settlement and attenuation of contaminants, followed by discharge to un-lined and vegetated EDBs for further attenuation. Whilst the un-lined EDBs are designed to drain to ground, it is expected that a significant proportion of the discharge following storm events will be routed to the River Itchen.
- 7.1.6 A HEWRAT assessment has been undertaken for each of the EDBs. The results of the screening assessment show that all but one of the currently proposed Extended Detention Basins (EDT) have a 'medium risk' to groundwater and one has a high risk. In order to mitigate against the high risk EDB, it is proposed that this EDB will be lined, thus preventing discharge to groundwater. On this basis a DQRA has been undertaken to further assess the risk from the un-lined EDBs.

- 7.1.7 Acute risk from soluble contaminants present in the EDBs has been assessed as low. The contaminant concentrations in the EDBs, as derived from the HEWRAT assessment are below the UK DWS and thus pose no significant risk to groundwater.
- 7.1.8 The models demonstrate that none of the EDBs are likely to result in an impact on groundwater from determinants present within the sediment lining the base of the EDBs (chronic risk).
- 7.1.9 For the hazardous PAH compounds, the aqueous source term concentration leached from the EDB sediments is limited by the determinant pure phase solubility and the fact that these determinants are highly sorbed onto the sediment matrix. Thus, concentrations leaching from the sediment are modest. The model shows that there is likely to be a sufficient thickness of unsaturated zone, comprising material containing sufficient organic carbon, to provide sufficient attenuation and ensure that there is no discharge to the water table.
- 7.1.10 Copper and cadmium also sorb highly to the EDB sediment such that aqueous concentrations in the EDBs are unlikely to reach concentrations that would cause pollution of groundwater. Predicted aqueous source term zinc concentrations are higher, but attenuation within the unsaturated zone, combined with dilution in the receiving groundwater is sufficient to ensure there is no pollution by this determinant.
- 7.1.11 Sensitivity analysis has been undertaken of the DQRA models. These show that the models are sensitive to the faction of organic carbon (for organic compounds), infiltration rate and unsaturated zone thickness. Further data on these parameters should be collected as detailed in the next section.

7.2 Recommendations

- 7.2.1 Stantec has proposed additional GI at each of the EDBs. Geological data obtained from this GI will provide a better understanding of the superficial strata likely to underlie each of these structures. Once these data are available, the HgRA should be reviewed and updated based on the complete dataset.
- 7.2.2 A number of the boreholes will be completed as groundwater monitoring wells. Timeseries monitoring data will provide more confidence on the unsaturated zone thickness at each of these structures.
- 7.2.3 It is proposed to undertake soakaway tests at the proposed EDB locations. This will inform the understanding of the unsaturated zone hydraulic conductivity.
- 7.2.4 It is recommended that soil samples are taken from each of the strata encountered and subject to laboratory testing for fraction of organic carbon. These data can then be used to refine the DQRA model and inform predictions of the risk to groundwater from the Scheme's drainage design.

8 References

Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A., MacDonald, A. M., & Williams, A. T. (1997). The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34.

Booth, K., Farrant, A. R., Hopson, P. M., Woods, M. A., Evans, D. J., & Wilskinson, I. (2008). Geology of the Winchester district. Sheet description of the British Geological Survey, 1:50 000 Series Sheet 299 (England and Wales).

British Geological Survey. (2002). Winchester. England and Wales Sheet 299. Solid and Drift Geology. 1:50 000. (Keyworth, Nottingham: British Geology Survey).

CIRIA. (2021). Contaminated Land Risk Assessment. A Guide to Good Practice.

Entec. (2002). River Itchen Catchment Groundwater Modelling Study Phase 2.

Envirocheck. (2016). Envirocheck Report, Site at Winnall Down Farm HampshireOrder Number 85178192_1_1 fo WSP.

Environment Agency. (2006). Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination.

Environment Agency. (2018). The Environment Agency's approach to groundwater protection V1.2.

Environment Agency. (2019). Guidance Groundwater source protection zones (SPZs). Retrieved August 2021, from https://www.gov.uk/guidance/groundwater-source-protection-zones-spzs

Environment Agency. (2021). https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm.

ESI. (2001). Benchmarking RAM: ESI'S Groundwater Risk Assessment Tool. Report Reference 5303R1D1.

ESI. (2008). RAM 3 User Guide.

Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

Highways England. (2015). HEWRAT V2.0 Help guide.

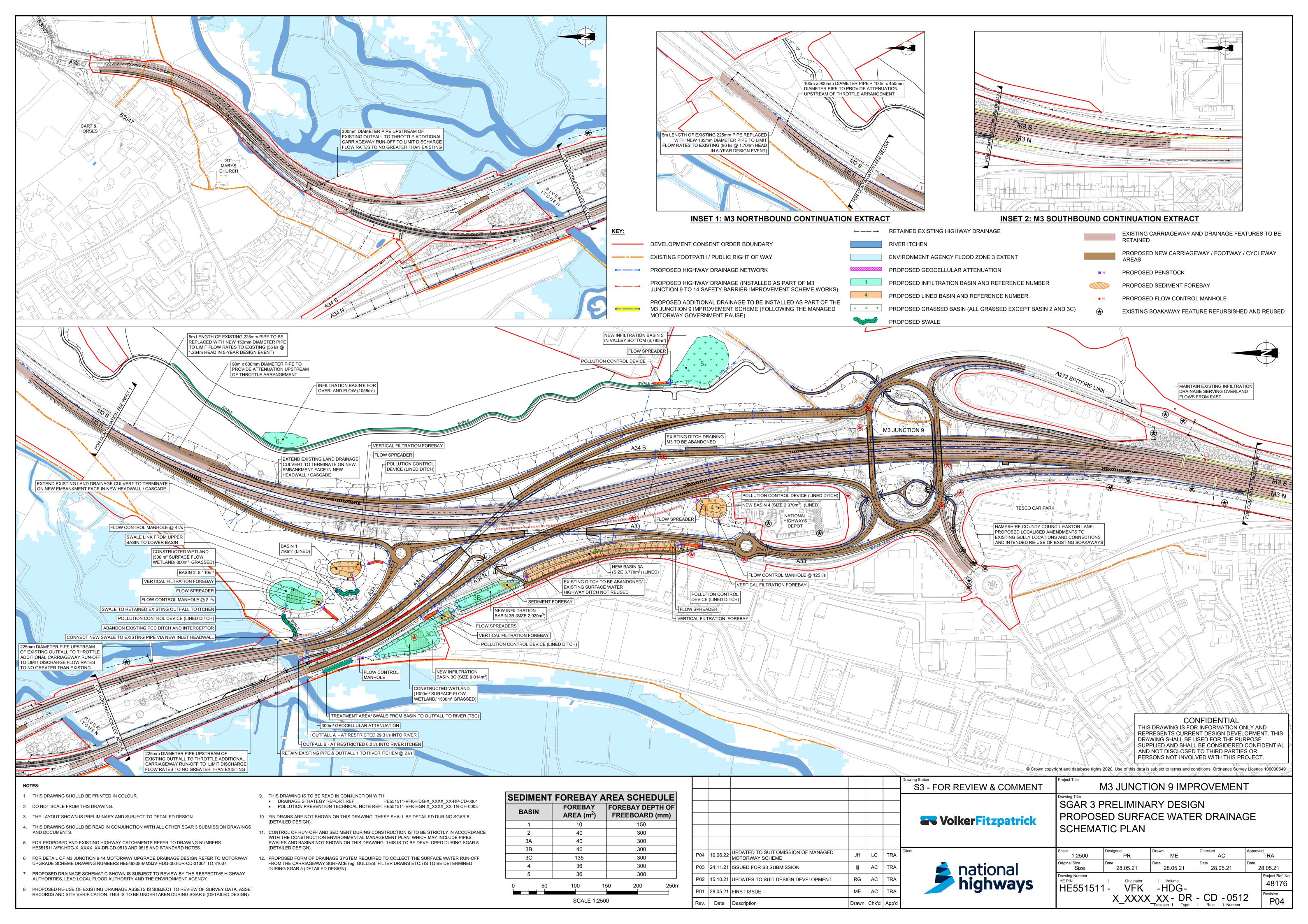
Institute of Geological Sciences and Southern Water Authority. (1979). Hydrogeological map of Hampshire and the Isle of Wight, Scale 1:100 000.

NRFA. (2021). 42016 - Itchen at Easton. Retrieved August 2021, from https://nrfa.ceh.ac.uk/data/station/spatial/42016

Reading Agricultural Consultants. (2021). Agricultural Land Classification and Soil Resources at M3 Junction 9 Winchester. For Stantec UK Limited.

Robinson, P. C., & Hodgkinson, D. P. (1996). Exact solutions for radionuclide transport in the presence of parameter uncertainty. Technical Report AERE R 12125. Harwell Laboratory, Oxfordshire.

Stantec. (2021). M3 Junction 9 improvement scheme - Preliminary Environmental Information Report (PEIR).


UKTAG. (2016). UK Technical Advisory Group on the Water Framework Directive: Technical report on Groundwater Hazardous Substances.

WPK. (2007). Wastewater discharges to ground Morestead Road Wastewater Treatment Works Groundwater Investigations - Interpretative Report prepared for Southern Water.

WSP. (2017). Preliminary Sources Study Report.

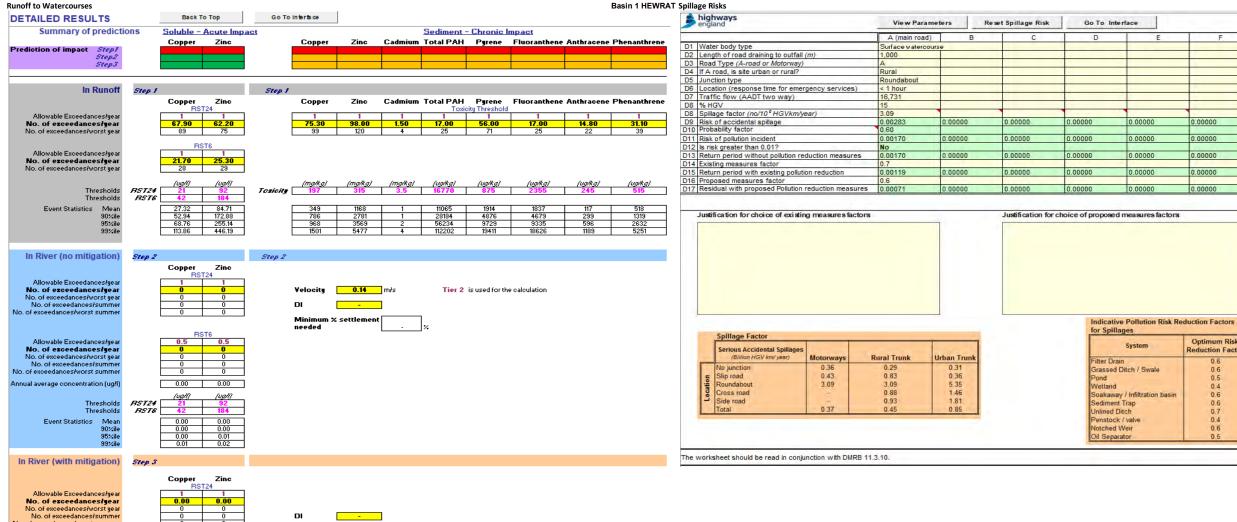
Appendix A HE551511-VFK-HDG-X_XXXX_XX-DR-CD-0512_Drainage Schematic Plan

Appendix B HEWRAT screening assessments

	EQS - Annual Average Co Copper	ncentration Zinc			Acute I	mpact		Alast D	rotected Area.
	0.00	0.00	ug/l		Copper	Zinc		Aleit. F	Totected Alea.
Step 2	0.00	0.00	ogii		Pass	Pass		liment deposition	n for this site is judged as: 0 0.14 Low flow Velm
Step 3	0.00	0.00	ug/l					ensive? No	
oad number					HE Area / DBFO	number			
ssessment type		Non-cumulative	assessment (single or	.tfall)					
S grid reference of assessme	nt point (m)	Easting				Northing			
S grid reference of outfall struc	cture (m)	Easting				Northing			
utfall number					List of outfalls in	cumulative			
eceiving watercourse					assessment				
A receiving water Detailed Riv	ver Network ID				Assessor and aff	liation			-
ate o fassessment					Version of assess	sment			
A Donald Occilia									
Step 1 Runoff Quality	AADT >10,000 and <	50,000	▼ Climatio	c region Wa	rm Wet 🔻	Rainfall site	South	ampton (SAAR 820n	nm)
Step 2 River Impacts	Annual Q ₉₅ river flow (m ³ /s)							
			2.6	Fi	reshwater EQS limits:				
			0.445	_ Fi		olved copper (µg/l)		1 D	
(Enter zero in Annual Q ₉₅ river flow box to assess Step 1 runoff quality only)	Permeable area draining to	nined (ha)	0.445		Bioavailable disse Bioavailable disse	olved copper (µg/l)		10.9 D	
river flow box to assess		nined (ha)	0.445		Bioavailable diss	olved copper (µg/l)	a protected site	10.9 D	n? Yes •
river flow box to assess Step 1 runoff quality only)	Permeable area draining to	nined (ha)	0.445 0.179 0.89		Bioavailable disse Bioavailable disse	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of		10.9 D	
river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Permeable area draining to Base Flow Index (BFI)	uined (ha) o outfall (ha) Medium = 50-200 Car	0.445 0.179 0.89	Is th	Bioavailable dissons Bioavailable dissons Bioavailable dissons Bioavailable dissons Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable dissons Bioavailable dissons Bioavailable diss	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient		10.9 De for conservation	
river flow box to assess Step 1 runoff quality	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream stru	uined (ha) o outfall (ha) Medium = 50-200 Car	0.445 0.179 0.89	Is th	Bioavailable dissons Bioavailable dissons Bioavailable dissons Bioavailable dissons Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable Bioavailable dissons Bioavailable dissons Bioavailable diss	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient		10.9 De for conservation	
river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream stru	ined (ha) o outfall (ha) Medium = 50-200 Ca cture, lake, pond or ca river width (m)	0.445 0.179 0.89	Is th	Bioavailable diss- Bioavailable diss- e discharge in or with For dissolved copi 00m of the point of d	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient ischarge?		e for conservation	
river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream structure of Tier 1 Estimated	ined (ha) o outfall (ha) Medium = 50-200 Ca cture, lake, pond or ca river width (m)	0.445 0.179 0.89 0.003/4	Is the	Bioavailable diss- Bioavailable diss- e discharge in or with For dissolved copi 00m of the point of d	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient ischarge?	t background co	e for conservation	n) o
river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream structure of Tier 1 Estimated	Medium = 50-200 Ca cture, lake, pond or ca river width (m)	0.445 0.179 0.89 0.003/4	Is the	Bioavailable dissing Bioavailable dissing Bioavailable dissing edischarge in or with For dissolved copp.	olved copper (µg/l) olved zinc (µg/l) olved zinc (µg/l) olin 1 km upstream of per only Ambient ischarge?	e slope (m/m)	e for conservation	7)
river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only Step 3 Mitigation	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream structure of Tier 1 Estimated	ined (ha) o outfall (ha) Medium = 50-200 Ca cture, lake, pond or ca river width (m)	0.445 0.179 0.89 0.003/4	Is the state of th	Bioavailable dissible dissible discharge in or with For dissolved copy 00m of the point of discharge in 00m. Treatment for solubles (%)	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient ischarge? Side E stimated effectiven Attenuation for solut estricled discharge ra	e slope (m/m) ess less Se'te (l/s) sed	tiement of iments (%)	7)
river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream structure of Tier 1 Estimated	Medium = 50-200 Ca cture, lake, pond or ca river width (m)	0.445 0.179 0.89 0.003/4	Is the locity within 1	Bioavailable dissible and a second of the point of dissolved copies of the point of dissolved copie	olved copper (µg/l) olved zinc (µg/l) nin 1 km upstream of per only Ambient ischarge? Side E stimated effectiven Attenuation for solut	e slope (m/m) less less les - Se te (Vs) sed	titement of	0

		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	<=50,000 AADT	1	10
2	SOURCE 10		Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <15 m to >5 m	2	40
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Flow dominated by fractures/ fissures (e.g. well consolidated sedimentary deposits, igneous and metamorphic rocks or unconsolidated deposits of very coarse sand and coarser)	3	60
7	FAIIWAI	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		210

Basin 1 HEWRAT


Totals Period 0.0017 589

0.0012 841

Optimum Risk

0.6 0.5 0.4 0.6 0.6 0.7 0.4 0.6

Reduction Facto

Runoff to Watercourses

Basin 2 HEWRAT Infiltration to Groundwater

Basin 2 HEWRAT

· blobuses

		Water Risk Assessn		Version 2.0.4 June 20	3		
		Solub	le			Sediment - I	Chronic Impact
	EQS - Annual Average Con			Acute Impa	ct	Alert. Prote	antad Area
	O.00	Zinc 0.00	ug/l	Copper	Zinc	Alert. Prote	ected Area.
Step 2	0.00	0.00	dg.,	Pass	Pass	Accumulating? No	for this site is judged as: 0.14 Low flow Vel m/s
Step 3	0.00	0.00	ug/l			Extensive? No	- Deposition Index
-11	•			Luc Assaulance		_	
oad number				HE Area / DBFO nun	ber		
ssessment type	at a sint (as)		essment (single outfall)		la distan		_
S grid reference of assessme		Easting			lorthing		
S grid reference of outfall struc	cture (m)	Easting			lorthing		
utfall number eceiving watercourse				List of outfalls in curr assessment	uative		
eceiving watercourse A receiving water Detailed Riv	orNatuat ID			Assessor and a filiati	<u> </u>		
A receiving water Detailed Riv ate of assessment	VELIN CLWOIK ID			Version of assessme			
ate or assessment otes				version or assessme	III.		
(Enter zero in Annual Que	Annual Q ₉₅ river flow (m ³ /s)	-14-2	1.24	Freshwater EQS limits:	4 6 M	1 D	
river flow box to assess Step 1 runoff quality	Impermeable road area drain Permeable area draining to o		0.595	Bioavailable dissolve		10.9	
only)	Base Flow Index (BFI)		0.89	Is the discharge in or within	km upstream of a	protected site for conservation?	Yes 🔻
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/	•	For dissolved copper	only Ambient I	background concentration (μg/l)	0 D
For sediment impact only	Is there a downstream structu	ure, lake, pond or canal f	that reduces the velocity wi	thin 100m of the point of disch	arge?	No -	
			5				
,	C Tier 1 Estimated riv	rer width (m)	3				
	© Tier 1 Estimated riv			nning's n 0.07	Side	slope (m/m) 0.5 Long	slope (m/m) 0.0001
							slope (m/m) 0.0001
Step 3 Mitigation				Es	timated effectivene	ss	slope (m/m) 0.0001
				Es Treatment for A		ss es - Settlement of	slope (m/m) 0.0001
		n)		Treatment for A solubles (%)	timated effectivene	ss es - Settlement of	slope (m/m) 0.0001
Step 3 Mitigation		n)		Treatment for solubles (%) restr	timated effectivene tenuation for solubl cted discharge rate	ss es - Settlement of sediments (%)	slope (m/m) 0.0001

omponent Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	<=50,000 AADT	1	10
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Dominantly intergranular flow (e.g. non-fractured consolidated deposits or unconsolidated deposits of fine-medium sand or finer)	1	20
7	PATHWAY	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		190
				RISK SCREENING LEVEL		Medium

Basin 2 HEWRAT

DETAILED RESULTS Back To Top Gn To Interface In Runoff Step 1 Step 1 Copper Ziac

R\$T24

1 1

67.30 62.20

83 75 Allowable Exceedances/year

No. of exceedances/year

No. of exceedances/worst year In River (no mitigation) Step 2 Step 2 Copper Ziac
R8T24

1 1 0
0 0
0 0
0 0
0 0 Velocity 0.14 m/s No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/summer Tier 2 is used for the calculation DI -Minimum 2 settlement needed Allowable Exceedances/year
No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/worst year
No. of exceedances/worst summer 0.00 0.00 Thresholds RS724 21 32
Thresholds RS76 42 184
istics Mean 90% 0.00 0.00
95% 0.00 0.01
95% 0.01 0.02
93% 0.02 0.07 In River (with mitigation) Seep 3 Allowable Exceedances/year
No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/summer
No. of exceedances/summer 0.00 0.00 Thresholds resholds
Thresholds 85724 21 32
Thresholds 8576 42 184

Rural Roundabout Roundabo	england			View Param	eters	Reset Spillage Risk	Go To Ir	ne made			
1,000				A (main road)	В	С	D	E	F	1	
1,000	Water body type	e									
or Motorway) M Rural Roundabout It time for emergency services) > 1 hour 10 HGV/km/year) 3.09 piliplage 0.00846 0.00000			m)								
Part		oad or Motorway)	,							1	
Indicative Pollution Risk Reduction Factors	If A road, is site			Rural						1	
Infection Section Se	Junction type	arban or raran								1	
The color Section Se		nse time for emer	rency services)								
15	Traffic flow (AA		circy curricus,								
10 Hollwaysear 3.99	% HGV	to the maj			-					1	
Description 0,00046 0,00000		no/10° HGVkm/ve	arl				_			4	
1.75	Risk of accident		uij		0.00000	0.00000	0.00000	0.00000	0.00000		
Indicative Pollution Risk Reduction Factors System Optimum Risk Reduction Factors	Probability facto)r			0.00000	0.00000	0.00000	0.00000	0.00000		
No	Risk of pollution				0.00000	0.00000	0.00000	0.00000	0.00000		Return
Description reduction measures 0.00634 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000	Is risk greater th				0.00000	0.00000	0.00000	0.00000	0.00000	Totale	Period
Indicative Pollution Risk Reduction Factors System Optimum Risk Reduction Factors Ostantial Spillages			luction manuscon		0.00000	0.00000	0.00000	0.00000	0.00000		
Indicative Pollution Risk Reduction Factors O.0000	Existing measure		auction measures		0.00000	0.00000	0.00000	0.00000	0.00000	0.0003	130.
Indicative Pollution Risk Reduction Factors Justification for choice of proposed measures factors Justification for choice of proposed measures factors			n coduction		0.00000	0.00000	0.00000	0.00000	0.00000	0.0044	225
Indicative Pollution Risk Reduction Factors Justification for choice of proposed measures factors System Reduction Factor Firet Drain Office of proposed measures factors Justification for choice of proposed measures factors System Reduction Factor Firet Drain Office of proposed measures factors System Reduction Factor Firet Drain Office of proposed measures factors Optimum Risk Reduction Factor Firet Drain Office of proposed measures factors Optimum Risk Reduction Factor Firet Drain Office of proposed measures factors Optimum Risk Reduction Factor Firet Drain Office of proposed measures factors Optimum Risk Reduction Factor	Proposed measi		in reduction		0.00000	0.00000	0.00000	0.00000	0.00000	0.0044	225
Indicative Pollution Risk Reduction Factors			aduation manauron		0.00000	0.00000	0.00000	0.00000	0.00000	0.0007	275
Indicative Pollution Risk Reduction Factors For Spillages System System Reduction Factor	The continue of the party part	operate i manenti		0.00200	10.00000	0.00000	0.00000	0.00000	10.00000	10.0021	1010
System System System System Reduction Factor											
System System Reduction Factor Reduction Fa											
0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.7 0.8 0.6 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8	Spillage F	-actor									
0.43 0.83 0.36 Pond 0.5 3.09 3.09 5.35 Westand 0.4 - 0.88 1.46 Soaksavay / Infiltration basin 0.6 - 0.93 1.81 Sediment Trap 0.6 0.37 0.45 0.85 Unlined Ditch 0.7 Penstock / valve 0.4 Notched Weir 0.6		ccidental Spillages	Motorways	Rural Trunk	Urban Trunk		for Spi	System System	Optimum Risk Reduction Factor		
3 09 3 09 5.35 Wetland 0.4 - 0.88 1.46 Soakaway / Infiltration basin 0.6 - 0.93 1.81 Sediment Trap 0.6 0.37 0.45 0.85 Unlined Ditch 0.7 Penstock / valve 0.4 Notched Weir 0.6	Serious Ac	ccidental Spillages HGV km/ year)					for Spi	System rain	Optimum Risk Reduction Factor 0.6		
0.88 1.46 Soakaway / Infiltration basin 0.6 Soakaway / Infiltration basin 0.6 Soakaway / Infiltration basin 0.6 Unifiled Ditch 0.7 Penstock / Valve 0.4 Notched Weir 0.6 Valve 0	Serious Ac (Billian No junction	ccidental Spillages HGV km/ year)	0.36	0.29	0.31		Filter D Grasse	System rain	Optimum Risk Reduction Factor 0.6 0.6		
- 0.93 1.81 Sediment Trap 0.6 Unlined Ditch 0.7 Penstock / valve 0.4 Notched Weir 0.6	Serious Ac (Billian No junction	ccidental Spillages HGV km/ year)	0.36 0.43	0.29 0.83	0.31 0.36		Filter D Grasse Pond	System rain d Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5		
0.37 0.45 0.85 Unimed Disch 0.7 Penstock / valve 0.4 Notched Weir 0.6	Serious Ac (Billian No junction	ccidental Spillages HGV km/year)	0.36 0.43	0.29 0.83 3.09	0.31 0.36 5.35		Filter D Grasse Pond Wetlan	System rain d Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
Penstock / valve 0.4 Notched Weir 0.6	Serious Ac (Billion No junction Slip road Roundabou Cross road	ccidental Spillages HGV km/year)	0.36 0.43	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Filter D Grasse Pond Wetlan Soakay	System rain d Ditch / Swale d vay / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
Notched Weir 0.6	Serious Ac (Billion	ccidental Spillages HGV km/year)	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter D Grasse Pond Wetlan Soakay Sedime	System rain d Ditch / Swale d d vay / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6		
	Serious Ac (Billion No junction Slip road Roundabou Cross road	ccidental Spillages HGV km/year)	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter D Grasse Pond Wetlan Soakay Sedime	System rain d Ditch / Swale d d vay / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6		
	Serious Ac (Billion	ccidental Spillages HGV km/year)	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter D Grasse Pond Wetlan Soakay Sedime Unlined	System rain d Ditch / Swale d vay / Infiltration basin int Trap Ditch	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6		
	Serious Ac (Billion	ccidental Spillages HGV km/year)	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter D Grasse Pond Wetlan Soakay Sedime Unlined Pensto	System rain d Ditch / Swale d d vay / Infiltration basin nt Trap Ditch ck / Valve	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6 0.7		
united the second secon	Serious Ac (Billion	ccidental Spillages HGV km/year)	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter D Grasse Pond Wetlan Soakav Sedime Unlined Pensto Notche	System rain d Ditch / Swale d vay / Infiltration basin nt Trap Ditch ck / valve d Weir	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.7 0.4		

Runoff to Watercourses

Basin 3A HEWRAT Infiltration to Groundwater

Basin 3A HEWRAT

highways england							
		Sol	luble			Sediment - Cl	hronic Impact
	EQS - Annual Average C	oncentration			Acute Impact		
	Copper	Zinc				Alert. Protect	cted Area.
Step 2	0.00	0.02	ug/l	Coppe	Zinc Pass	Sediment deposition for Accumulating? No	or this site is judged :
Step 3	0.00	0.01	ug/l			Extensive? No	- Deposition Ir
load number				HE Area	/DBFO number		
ssessment type		Non-cumulative a	ssessment (single out	fall)		<u> </u>	
S grid reference of assessmen	nt point (m)	Easting			Northing		
S grid reference of outfall struc		Easting			Northing		
utfall number				List of o	utfalls in cumulative		
eceiving watercourse				assessn			
A receiving water Detailed Riv	ver Network ID			Assess	or and a filiation		
ate of assessment					ofassessment		
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	AADT >=100,000 Annual Q ₅₅ river flow (m³/s Impermeable road area drs Permeable area drsining to	ained (ha)	2.6 6.656 0.435		Rainfall site QS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l)	Southampton (SAAR 820mm)	
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	Annual Q _{ps} river flow (m³/s	ained (ha)	2.6	Freshwater E Bioavail	QS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l)	1	Yes v
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	Annual Q _{as} river flow (m³/s) Impermeable road area dra Permeable area draining to	ained (ha)	2.6 5.856 0.435 0.89	Freshwater E Bioavail Bioavail	QS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l) in or within 1 km upstream of	1 0	Yes
Step 2 River Impacts (Enter zero in Annual Q _{gg} river flow box to assess Step 1 runoff quality only)	Annual Q ₀₀ river flow (m³/s Impermeable road area dra Permeable srea draining to Base Flow Index (BFI) Water hardness	Medium = 50-200 CaC cture, lake, pond or car rriver width (m)	2.6 5.856 0.435 0.89	Freshwater E Bioavail Bioavail Is the discharge For dissol	QS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l) in or within 1 km upstream or ved copper only Ambien boint of discharge?	1 0.9 of a protected site for conservation?	Yes
river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Queriver flow (m³/s Impermeable road area dra Permeable srea draining to Base Flow Index (BFI) Water hardness Is there a downstream stru C Tier 1 Estimated	Medium = 50-200 CaC cture, lake, pond or car rriver width (m)	2.6 5.866 0.435 0.89	Freshwater E Bioavail Bioavail Bioavail For dissolocity within 100m of the	OS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l) in or within 1 km upstream or ved copper only Ambien point of discharge? Sic Estimated effective br Attenuation for solo.	f a protected site for conservation? It background concentration (μg/l) No See slope (m/m) 0.5 Long s ness ables - Settement of	Yes v
(Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Queriver flow (m³/s Impermeable road area dra Permeable srea draining to Base Flow Index (BFI) Water hardness Is there a downstream stru C Tier 1 Estimated	inined (ha) o outfall (ha) Medium = 50-200 CaC cuture, lake, pond or car river width (m) (m)	2.6 5.866 0.435 0.89	Freshwater E Blooavail Blooavail Biosevail Is the discharge For dissol city within 100m of the	QS limits: able dissolved copper (µg/l) able dissolved zinc (µg/l) in or within 1 km upstream of ved copper only Ambier point of discharge? Estimated effective br Attenuation for soli, restricted discharge re	f a protected site for conservation? It background concentration (μg/l) No See slope (m/m) 0.5 Long s ness ables - Settement of	Yes v

Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	>50 to <150	2	20
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Flow dominated by fractures/ fissures (e.g. well consolidated sedimentary deposits, igneous and metamorphic rocks or unconsolidated deposits of very coarse sand and coarser)	3	60
7	FAIRWAI	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		260
				RISK SCREENING LEVEL		High

Basin 3A HEWRAT

Basin 3A HEWRAT Spillage Risks Runoff to Watercourses Back To Top Go To Interface DETAILED RESULTS Summary of predictions Soluble - Acute Impact Sediment - Chronic Impact Copper Zinc Cadmium Total PAH Pyrene Fluoranthene Anthracene Phenanthrene Copper Zinc Prediction of impact Step1 Step2 Step5 In Runoff Step t Step t Copper Zinc
RST24

1 1
111.10 115.70
134 143 Allowable Exceedances/year
No. of exceedances/year
No. of exceedances/worst year RST6

1 1

70.70 89.80

91 113 No. of exceedances/year No. of exceedances/worst year | Thresholds | RST24 | 21 | 92 | 194 Event Statistics Mean 90%ile 95%ile 99%ile In River (no mitigation) Seep 2 Seep 2 Copper Zinc
RST24

1 1 0
0 0
0 0
0 0
0 0
0 0
0 0 Allowable Exceedances/yea Velocity 0.14 m/s MIOWable Exceedances/year
No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/summer
No. of exceedances/worst summer Tier 2 is used for the calculation DI -Minimum 2 settlement needed Allowable Exceedances/year
No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/worst summer
No. of exceedances/worst summer 0.00 0.02 Event Statistics Mean 90%ile 95%ile 99%ile 0.02 0.07 0.04 0.17 0.08 0.31 0.23 0.39 In River (with mitigation) Copper Ziac RST24

1 1 1

0.00 0.00

0 0 0

0 0 0

0 0 0 No. of exceedances/year No. of exceedances/worst year No. of exceedances/summer No. of exceedances/worst summer RST6

0.5 0.5

0.00 0.00

0 0

0 0 No. of exceedances/year No. of exceedances/worst year No. of exceedances/summer

Road Type If A road, Junction to Location (Traffic flot % HGV Spillage fa Risk of ac	f road draining to outfall (m) be (A-road or Motorway) , is site urban or rural?		A (main roa Surface watero 2,250 A Rural		C	D	E		0.	
Length of Road Type If A road, Junction ty Location (Traffic flo % HGV Spillage fa Risk of ac	f road draining to outfall (m) be (A-road or Motorway) , is site urban or rural? type (response time for emerger ow (AADT two way)		2,250 A	course			E	F		
Road Type If A road, Junction to Location (Traffic flot % HGV Spillage fa Risk of ac	ne (A-road or Motorway) , is site urban or rural? type (response time for emerger ow (AADT two way)		A						7	
If A road, Junction to Location (Traffic flow HGV Spillage fa Risk of ac	, is site urban or rural? type (response time for emerger ow (AADT two way)	ncy services)								
Junction to Location (Traffic flow % HGV Spillage fa Risk of ac	type (response time for emerger ow (AADT two way)	ncy services)	Dural							
Location (Traffic flow % HGV Spillage fa Risk of ac	(response time for emerger ow (AADT two way)	ncy services)								
Traffic flor % HGV Spillage fa Risk of ac	ow (AADT two way)	ncy services)	Roundabout							
% HGV Spillage fa Risk of ac	•		< 1 hour							
Spillage fa Risk of ac	factor (no/10° HGVkm/year		28,000	- 11						
Risk of ac	factor (no/10 HGVkm/year		15							
)	3.09	100						
	ccidental spillage		0.01066	0.00000	0.00000	0.00000	0.00000	0.00000		
	y factor		0.60							
	ollution incident		0.00639	0.00000	0.00000	0.00000	0.00000	0.00000		Retur
	eater than 0.01?		No						Totals	Perio
	eriod without pollution reduc	ction measures	0.00639	0.00000	0.00000	0.00000	0.00000	0.00000	0.0064	156
	measures factor		0.6				1 1 1 1 1			
	eriod with existing pollution	reduction	0.00384	0.00000	0.00000	0.00000	0.00000	0.00000	0.0038	261
	d measures factor		0.4	1 2 7 1						2.7
Residual v	with proposed Pollution red	luction measures	0.00153	0.00000	0.00000	0.00000	0.00000	0.00000	0.0015	652
							utive Pollution Risk R	eduction Factors		
	llage Factor						illages	Optimum Risk		
Serie	rious Accidental Spillages	lotorways	Rural Trunk	Urban Trunk		for Sp	System	Optimum Risk Reduction Factor		
Serie	rious Accidental Spillages	lotorways 0.36	Rural Trunk 0.29	Urban Trunk		for Sp	System Orain	Optimum Risk Reduction Factor		
Serie No ju	rious Accidental Spillages (Billion HGV km/ year) M junction					Filter E Grasse	System	Optimum Risk Reduction Factor 0.6 0.6		
Serie No ju	rious Accidental Spillages (Billion HGV km/ year) M junction	0.36	0.29	0.31		Filter E Grassi Pond	System Orain ed Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6 0.5		
No ju Slip i Roun Cross	rious Accidental Spillages (Billion HGV.km/year) Junction road undabout ss road	0.36 0.43	0.29 0.83	0.31 0.36		Filter E Grassi Pond Wetlar	System Orain ed Ditch / Swale	Optimum Risk Reduction Factor 0.6 0.6		
No ju Slip i Roun Cross	rious Accidental Spillages (Billion HGV km/ year) Junction Troad Indabout	0.36 0.43 3.09	0.29 0.83 3.09	0.31 0.36 5.35		Filter D Grassi Pond Wetlar Soaka	System Orain ed Ditch / Swale and way / Infiltration basin	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6		
No ju Slip i Roun Cross	rious Accidental Spillages (Billion HSV km/year) Junction road indabout ss road e road	0.36 0.43	0.29 0.83 3.09 0.88	0.31 0.36 5.35 1.46		Filter E Grassi Pond Wetlar Soaka Sedim	System Drain ed Ditch / Swale nd wway / Infiltration basin ent Trap	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4		
No ju Slip i Roun Cross Side	rious Accidental Spillages (Billion HSV km/year) Junction road indabout ss road e road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter S Grassi Pond Wetlar Soaka Sedim Unline	System Drain ed Ditch / Swale and way / Infiltration basin ent Trap d Ditch	Optimum Risk Reduction Factor 0.6 0.6 0.5 0.4 0.6 0.6	4	
No ju Slip i Roun Cross Side	rious Accidental Spillages (Billion HSV km/year) Junction road indabout ss road e road	0.36 0.43 3.09	0.29 0.83 3.09 0.88 0.93	0.31 0.36 5.35 1.46 1.81		Filter E Grassr Pund Wetlar Soaka Sedim Unline Penst	System Drain ed Ditch / Swale nd wway / Infiltration basin ent Trap	Optimum Risk Reduction Factor 0.6 0.5 0.4 0.6 0.6 0.7		

Runoff to Watercourses

Basin 3B HEWRAT Infiltration to Groundwater

Basin 3B HEWRAT Infiltration to Groundwater

highways england								
		So	luble				Sedime	nt - Chronic Impact
	EQS - Annual Average Co				Acute	Impact		
	Oopper 0.00	Zinc 0.02				-	Alert.	Protected Area.
Step 2	0.00	0.02	٥	ıgil	Copper	Zinc	Sediment depos	ition for this site is judged as:
					Pass	Pass	Accumulating?	No 0.14 Low flow Vel m/
Step 3	0.00	0.01	U	ig/l			Extensive?	No - Deposition Inde
load number					HE Area / DBFC	number		
ssessment type		Non-cumulative	assessment (single	e outfall)				
S grid reference of assessmen	nt point (m)	Easting				Northing		
S grid reference of outfall struc	ture (m)	Easting				Northing		
utfall number					List of outfalls in	cumulative		
leceiving watercourse					assessment			
A receiving water Detailed Riv	erNetwork ID				Assessor and a	filiation		
ate of assessment					Version of asset	ssment		
tep 1 Runoff Quality	AADT >=100,000		▼ Clim	atic region	Warm Wet •	Rainfall site	Southampton (SAAR 82	20mm) •
Step 2 River Impacts (Enter zero in Annual Q ₀₅ river flow box to assess Step 1 runoff quality	AADT >=100,000 Annual Q ₀₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to	ined (ha)	2.6 6.141 0.888	7	Freshwater EQS limit		Southampton (SAAR 82	
Step 2 River Impacts	Annual Q ₉₅ river flow (m³/s)	ined (ha)	2.6	7	Freshwater EQS limit Bioavailable dis	s: solved copper (µg/l)	1 0.9 0	
Step 2 River Impacts (Enter zero in Annual Q ₀₅ river flow box to assess Step 1 runoff quality	Annual Q _{as} river flow (m³/s) Impermeable road area dra Permeable area draining to	ined (ha)	2.6 6.14) 0.689	7	Freshwater EQS limit Bioavailable dis	s: solved copper (μg/l) solved zino (μg/l) thin 1 km upstream of a pro	1 0.9 0	tion? Yes
Step 2 River Impacts (Enter zero in Annual Q _{gg} river flow box to assess Step 1 runoff quality only)	Annual Q ₉₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI)	outfall (ha) Medium = 50-200 Cal	2.6 6.141 0.886 0.89	7 5	Freshwater EQS limit Bioavailable dis Bioavailable dis Bioavailable dis Is the discharge in or wi	s: solved copper (µg/l) solved zinc (µg/l) thin 1 km upstream of a pro	1 0.9 D tected site for conserval	fion? Yes v
Step 2 River Impacts (Enter zero in Annual O ₁₆ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₅₀ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness	outfall (ha) Medium = 50-200 Cat	2.6 6.141 0.886 0.89	7 5	Freshwater EQS limit Bioavailable dis Bioavailable dis Bioavailable dis Is the discharge in or wi	s: solved copper (µg/l) solved zinc (µg/l) thin 1 km upstream of a pro	1 10.9 tected site for conservation (p	fion? Yes v
Step 2 River Impacts (Enter zero in Annual Q ₁₈ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₅₀ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness	med (ha) outfall (ha) Medium = 50-200 Car ture, lake, pond or ca	2.6 6.141 0.886 0.89	7 5 velocity w	Freshwater EQS limit Bioavailable dis Bioavailable dis Bioavailable dis Is the discharge in or wi	sis: solved copper (µg/l) solved zinc (µg/l) thin 1 km upstream of a pro pper only Amblent back discharge?	1 10.9 tected site for conservation (p	fion? Yes v
(Enter zero in Annual Q ₁₅ (Enter zero in Annual Q ₁₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q ₅₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated in	med (ha) outfall (ha) Medium = 50-200 Car ture, lake, pond or ca	2.6 6.141 0.881 0.99 CO34	7 5 velocity w	Freshwater EQS limit Bloavailable dis Bloavailable dis Bloavailable dis Is the discharge in or wi For dissolved cop	sis solved copper (µg/l) solved zinc (µg/l) thin 1 km upstream of a pro pper only Ambient back discharge?	1 10.9 tected site for conservar	5ion? Yes •
(Enter zero in Annual Q ₁₅ (Enter zero in Annual Q ₁₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q ₅₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated in	med (ha) outfall (ha) Medium = 50-200 Car ture, lake, pond or ca	2.6 6.141 0.881 0.99 CO34	7 5 velocity w	Freshwater EQS limit Bloavailable dis Bloavailable dis Is the discharge in or wi For dissolved cop within 100m of the point of sunning's n 007	sisolved copper (µg/ll) solved zinc (µg/ll) sthin 1 km upstream of a pro pper only Ambient back discharge? Side slop Essmated effectiveness	tected site for conserva	5ion? Yes •
(Enter zero in Annual Q ₈₅ (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q ₅₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated in	med (ha) outfall (ha) Medium = 50-200 Car ture, lake, pond or ca	2.6 6.141 0.881 0.99 CO34	7 5 velocity w	Freshwater EQS limit Bloavailable dis Bloavailable dis Is the discharge in or wi For dissolved cop rithin 100m of the point of unning's n 007	sis solved copper (µg/l) solved zinc (µg/l) thin 1 km upstream of a pro pper only Ambient back discharge?	tected site for conserva ground concentration (i	5ion?
river flow box to assess Step 1 runoff quality only)	Annual Q ₅₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI) Water hardness Is there a downstream struct C Tier 1 Estimated in	ined (ha) outfall (ha) Medum = 50-200 Cai ture, lake, pond or ca iver width (m) m)	2.6 6.141 0.881 0.99 CO34	7 5 velocity w	Freshwater EQS limit Bloavailable dis Bloavailable dis Is the discharge in or wi For dissolved cop rithin 100m of the point of unning's n 007	is is solved copper (µg/ll) solved zinc (µg/ll) thin 1 km upstream of a proper only Ambient back discharge? Side slop E sämated e flectiveness Attenuation for solubles	tected site for conserva ground concentration (i	5ion? Yes •

Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighte compone score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Dominantly intergranular flow (e.g. non-fractured consolidated deposits or unconsolidated deposits of fine-medium sand or finer)	1	20
7	PATHWAY	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		210
				RISK SCREENING LEVEL		Mediur

DETAILED RESULTS Back To Top Go To Interface Summary of predictions
Soluble - Acute Impact
Copper Ziac Sediment - Chronic Impact Zinc Cadmium Total PAH Pyrene Fluoranthene Anthracene Phenanthres In Runoff Step 1 Step 1 Copper Zinc Cadmium Total PAH Pyrene Fluoranthene Anthracene Phenanthrene
Toxicity Threshold Copper Zinc RST24 In River (no mitigation) Seep 2 Copper Zinc Yelocity 0.14 m/s Tier 2 is used for the calculation DI -Minimum 2 settlement needed In River (with mitigation) Copper Zinc
RST24

1 1 0.00 0.00
0 0 0
0 0 0 Allowable Exceedances/year

No. of exceedances/year

No. of exceedances/worst year

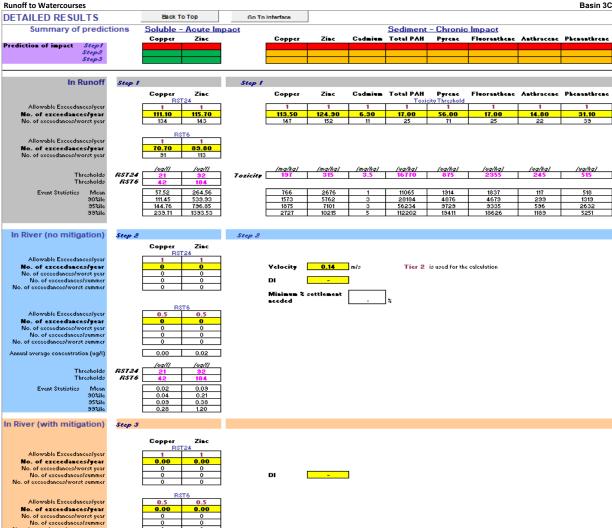
No. of exceedances/summer DI -No. of exceedances/year
No. of exceedances/worst year
No. of exceedances/summer

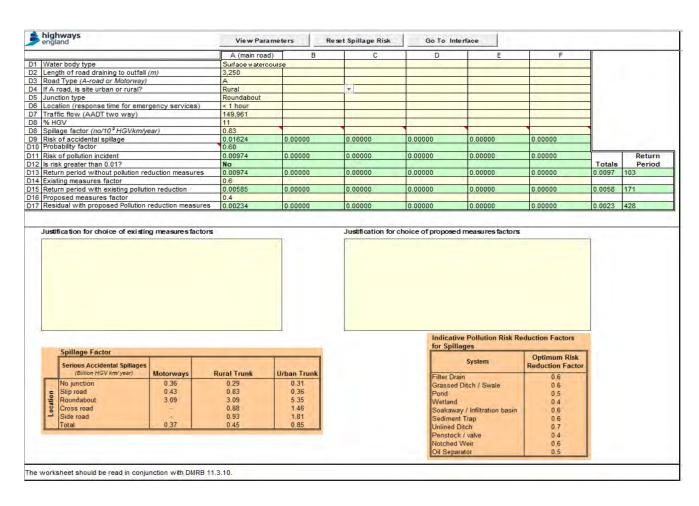
			Reset Spillage Risk	Go To Ir	nte rface			
	A (main road)	В	С	D	E	F	- 31	
ater body type	Surface watercour:	se						
ngth of road draining to outfall (m)	2,600							
ad Type (A-road or Motorway)	A							
A road, is site urban or rural?	Rural							
nction type	Roundabout							
cation (response time for emergency services)	< 1 hour							
affic flow (AADT two way)	28,000							
HGV	15							
illage factor (no/10° HGVkm/year)	3.09							
k of accidental spillage	0.01232	0.00000	0.00000	0.00000	0.00000	0.00000		
bability factor	0.60		10.7			10000		
k of pollution incident	0.00739	0.00000	0.00000	0.00000	0.00000	0.00000		Return
risk greater than 0.01?	No		1000				Totals	Period
turn period without pollution reduction measures	0.00739	0.00000	0.00000	0.00000	0.00000	0.00000	0.0074	135
isting measures factor	0.6			1,14		11.27	100	
turn period with existing pollution reduction	0.00443	0.00000	0.00000	0.00000	0.00000	0.00000	0.0044	226
posed measures factor	0.4						A. C.	
sidual with proposed Pollution reduction measures	0.00177	0.00000	0.00000	0.00000	0.00000	0.00000	0.0018	564
t in t	agth of road draining to outfall (m) ad Type (A-road or Motorway) croad, is site urban or rural? lection type cation (response time for emergency services) ffic flow (AADT two way) HGV liage factor (no/10° HGVkm/year) k of accidental spillage bability factor k of pollution incident lisk greater than 0.01? urn period without pollution reduction measures sting measures factor urn period with existing pollution reduction posed measures factor	agth of road draining to outfall (m) 2,600 A Type (A-road or Motorway) A road, is site urban or rural? Rural Roundabout cation (response time for emergency services) 4.1 hour file flow (AADT two way) 15 llage factor (no/10° HGVkm/year) 8.09 8.01232 bability factor 9.60 8.00 8.0739 No urn period without pollution reduction measures 10.00739 sting measures factor 10.6 urn period with existing pollution reduction 10.00443 posed measures factor 10.4	2,600 2,600 3 3 4 4 5 5 5 5 5 5 5 5	A	A	A	A	A

	Serious Accidental Spillages (Billion HGV km/ year)	Motorways	Rural Trunk	Urban Trun
	No junction	0.36	0.29	0.31
=	Slip road	0.43	0.83	0.36
ê	Roundabout	3.09	3.09	5.35
ocation	Cross road	-	0.88	1.46
3	Side road	-	0.93	1.81
	Total	0.37	0.45	0.85

The worksheet should be read in conjunction with DMRB 11.3.10.

Runoff to Watercourses

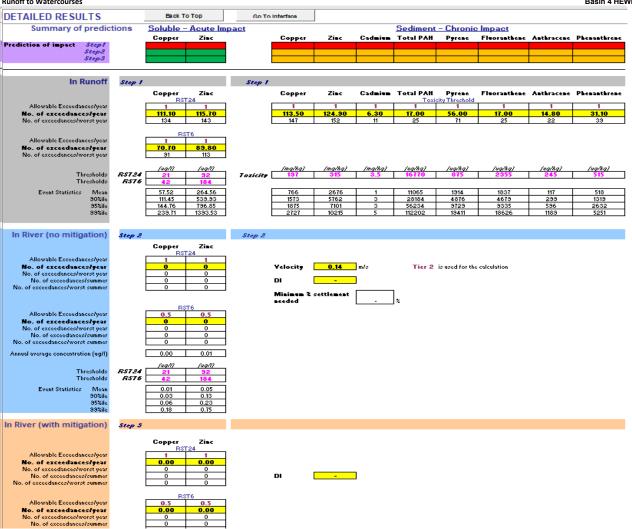

Basin 3C HEWRAT Infiltration to Groundwater

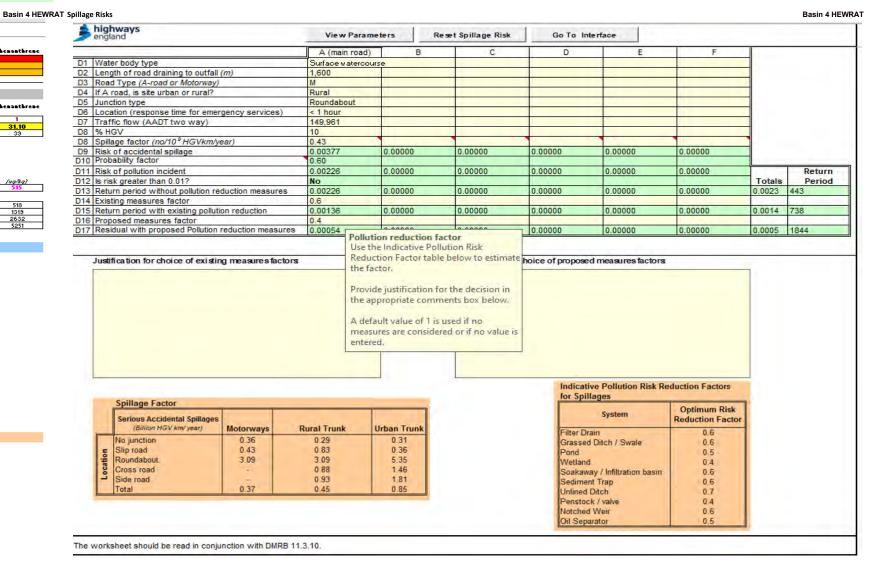

Basin 3C HEWRAT

unoff to Watercourses							Basin 3C HEW
highways england	Highways England	Water Risk Assessment To	ol	Version 2.0.4 June 2019			
		Soluble				Sediment - Chro	onic Impact
Step 2 Step 3 Road number Assessment type OS and reference of assessm Outfall number	EQS - Annual Average Cc Copper 0.00 0.00	Soluble	ug/l ug/l	Copper Pasz HE Area / DBFO number	Pass er withing withing	Sediment - Chr. Alert. Protecte Sediment deposition for t Accumulating? No Extensive? No	d Area.
Receiving watercourse				assessment			
EA receiving water Detailed R	iverNetwork ID			Assessor and a filiation			
Date of assessment				Version of assessment			
Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Qassiver flow box to assess Step 1 runoff quality only)	AADT >=100,000 Annual Q ₀₅ river flow (m ³ /s) Impermeable road area dra Permeable area draining to Base Flow Index (BFI)		2.6 7.107 1.072 0.89	Freshwater EQS limits: Bioavailable dissolved Bioavailable dissolved	zinc (μg/l)	Southempton (SAAR 820mm) 1	Yes
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper or	aly Ambient br	ackground concentration (μg/l)	0
For sediment impact only		ture, lake, pond or canal that reductiver width (m)	5	thin 100m of the point of dischar		No D	pe (m/m) 0.0001
Step 3 Mitigation		Brief description		Treatment for Atter	mated effectivenes nuation for soluble led discharge rate	s - Settlement of	
Existing measures				0 D No restr	_	D 0 D	
Proposed measures				50 No restr	riction -	D 50	
unoff to Watercourses	S Back 1	O TOD Go To Inte	urtana				Basin 3C HEW
		CAO TO INTA	rianal				
C	adiations C-L-LL			C - 1:-	Chi		

omponent Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <=5 m	3	60
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Dominantly intergranular flow (e.g. non-fractured consolidated deposits or unconsolidated deposits of fine-medium sand or finer)	1	20
7	PAINWAT	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE	·	210
				RISK SCREENING LEVEL		Medium

Basin 3C HEWRAT


Runoff to Watercourses


Basin 4 HEWRAT Infiltration to Groundwater

Basin 4 HEWRAT

highways england		and Water Risk Asses								
		Sol	luble					Sedim	ent – Chronic I	mpact
	EQS - Annual Average				Acute	Impact				
	Copper	Zinc						Alert	. Protected Are	a.
Step 2	0.00	0.01	ugil		Pass	Zinc		diment depo:	sition for this si	te is judged a
Step 3	0.00	0.01	ug/l				Ezt	tensive?	No -	Deposition In
load number					HE Area / DBF	O number				
ssessment type		Non cumulative a	ssessment (single out							
S grid reference of assessme	nt noint (m.)	Easting	ascasille it (single out)	idii)		Northing				
S grid reference of outfall stru		Easting				Northing				
utfall number	ocuro (III)	Labury			List of outfalls in					
					Listoroutialis ii assessment	Cumulative				
eceiving watercourse										
A receiving water Detailed Riv	verNetwork ID				Assessor and a					
ate of assessment					Version of asse	ssment				
tep 1 Runoff Quality	AADT >=100,000		▼ Climatic r	region Warm V	/et •	Rainfall site	South	hampton (SAAR 8	320mm)	•
	Andi						South	hampton (SAAR 8	320mm)	•
Step 2 River Impacts	Annual Q ₉₅ river flow (n	n ³ /s)	2.6	Fresh	water EQS limit	ts:	South			•
Step 2 River Impacts (Enter zero in Annual Q ₉₅ river flow box to assess	Annual Q ₉₅ river flow (n	n ³ /s) drained (ha)	2.6	Fresh	water EQS limi Bioavailable dis	ts: ssolved copper (µg/l)	South	1	D	•
Step 2 River Impacts (Enter zero in Annual Q ₉₅	Annual Q ₉₅ river flow (n	n ³ /s) drained (ha)	2.6] Fresh	water EQS limi Bioavailable dis Bioavailable dis	ts:		1 10.9	D D	Yes
Step 2 River Impacts (Enter zero in Annual Q ₈₅ river flow box to assess Step 1 runoff quality	Annual Q ₉₅ river flow (n Impermeable road area Permeable area drainin	n ³ /s) drained (ha)	2.6 4.389 0.128 0.89	Fresh	water EQS limi Bioavailable dis Bioavailable dis	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a	protected sit	1 10.9	D D Dation?	Yes
(Enter zero in Annual Q ₃₅ river flow box to assess Step 1 runoff quality only)	Annual Q ₅₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI)	n ^{3/s)} drained (ha) ng to outfall (ha)	2.6 4.389 0.128 0.89	Fresh Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a	protected sit	1 10.9 ite for conserv	D D D D D D D D D D D D D D D D D D D	Yes
river flow box to assess Step 1 runoff quality only)	Annual Q ₅₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness	n ³ /s) o drained (ha) ng to outfall (ha) Medium = 50-200 CaC	2.6 4.389 0.128 0.89	Fresh Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a	protected sit	1 10.9 ite for conserve	D D D D D D D D D D D D D D D D D D D	Yes v
Step 2 River Impacts (Enter zero in Annual Q ₃₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₅₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness	n ³ /s) Indicate (ha) Ing to outfall (ha) Medium = 50-200 CaC structure, lake, pond or can ted river width (m)	2.6 4.389 0.128 0.89	Fresh Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w r dissolved co	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a pper only Ambient b discharge?	protected sit	1 10.9 Ite for conservice concentration (D D D D D D D D D D D D D D D D D D D	Yes v
(Enter zero in Annual Q ₃₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{BS} river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream C Tier 1 Estima	n ³ /s) Indicate (ha) Ing to outfall (ha) Medium = 50-200 CaC structure, lake, pond or can ted river width (m)	2.6 4.389 0.128 0.89 0.89	Fresh	water EQS limi Bioavailable dis Bioavailable dis scharge in or w r dissolved co	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a pper only Ambient b discharge?	protected sit	1 10.9 Ite for conservice concentration (D ation? (μg/l)	Yes v
Step 2 River Impacts (Enter zero in Annual Q ₃₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q _{BS} river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream C Tier 1 Estima	n ³ /s) Indicate (ha) Ing to outfall (ha) Medium = 50-200 CaC structure, lake, pond or can ted river width (m)	2.6 4.389 0.128 0.89 0.89	Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w r dissolved co	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a pper only Ambient b discharge? Side: Estimated effectivener	protected sit	1 10.9 ite for conservice oncentration (No v 0.5	D ation? (μg/l)	Yes v
(Enter zero in Annual Q ₃₅ (Enter zero in Annual Q ₃₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{BS} river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream C Tier 1 Estima	n ³ /s) Indicate (ha) Ing to outfall (ha) Medium = 50-200 CaC structure, lake, pond or can ted river width (m)	2.6 4.389 0.128 0.89 0.89	Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w r dissolved co	ts: ssolved copper (μg/l) ssolved zinc (μg/l) ithin 1 km upstream of a pper only Ambient b discharge? Side:	protected sit	1 10.9 ite for conservir	D ation? (μg/l)	Yes v
(Enter zero in Annual Q ₃₅ (river flow box to assess Step 1 runoff quality only) For dissolved zinc only For sediment impact only	Annual Q _{BS} river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream C Tier 1 Estima	Medium = 50-200 CaC Medium = 50-200 CaC structure, lake, poind or can ted river width (m) dth (m)	2.6 4.389 0.128 0.89 0.89	Is the di	water EQS limi Bioavailable dis Bioavailable dis scharge in or w r dissolved co	ts: ssolved copper (µg/l) ssolved zinc (µg/l) ithin 1 km upstream of a pper only Ambient b discharge? Side: Estimated effectivener	protected sit	1 10.9 ite for conservice oncentration (No v 0.5	D ation? (μg/l)	Yes v

Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	>50 to <150	2	20
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <15 m to >5 m	2	40
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Flow dominated by fractures/ fissures (e.g. well consolidated sedimentary deposits, igneous and metamorphic rocks or unconsolidated deposits of very coarse sand and coarser)	3	60
7	PATRIWAT	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10
				TOTAL SCORE		240

Infiltration to Groundwater Basin 5 HEWRAT

highways england Reset GW Assessment Go To Interface

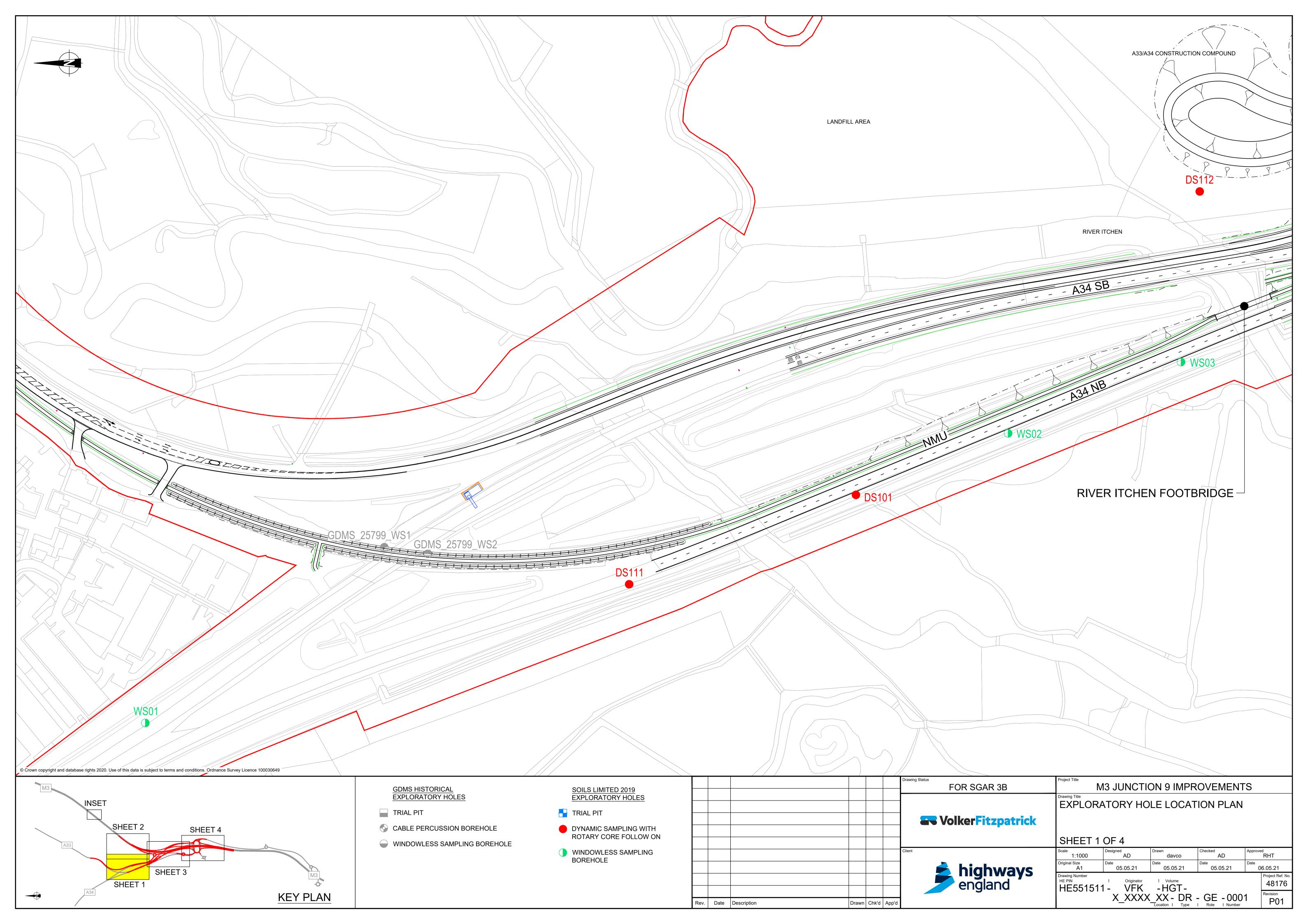
Groundwater Assessment

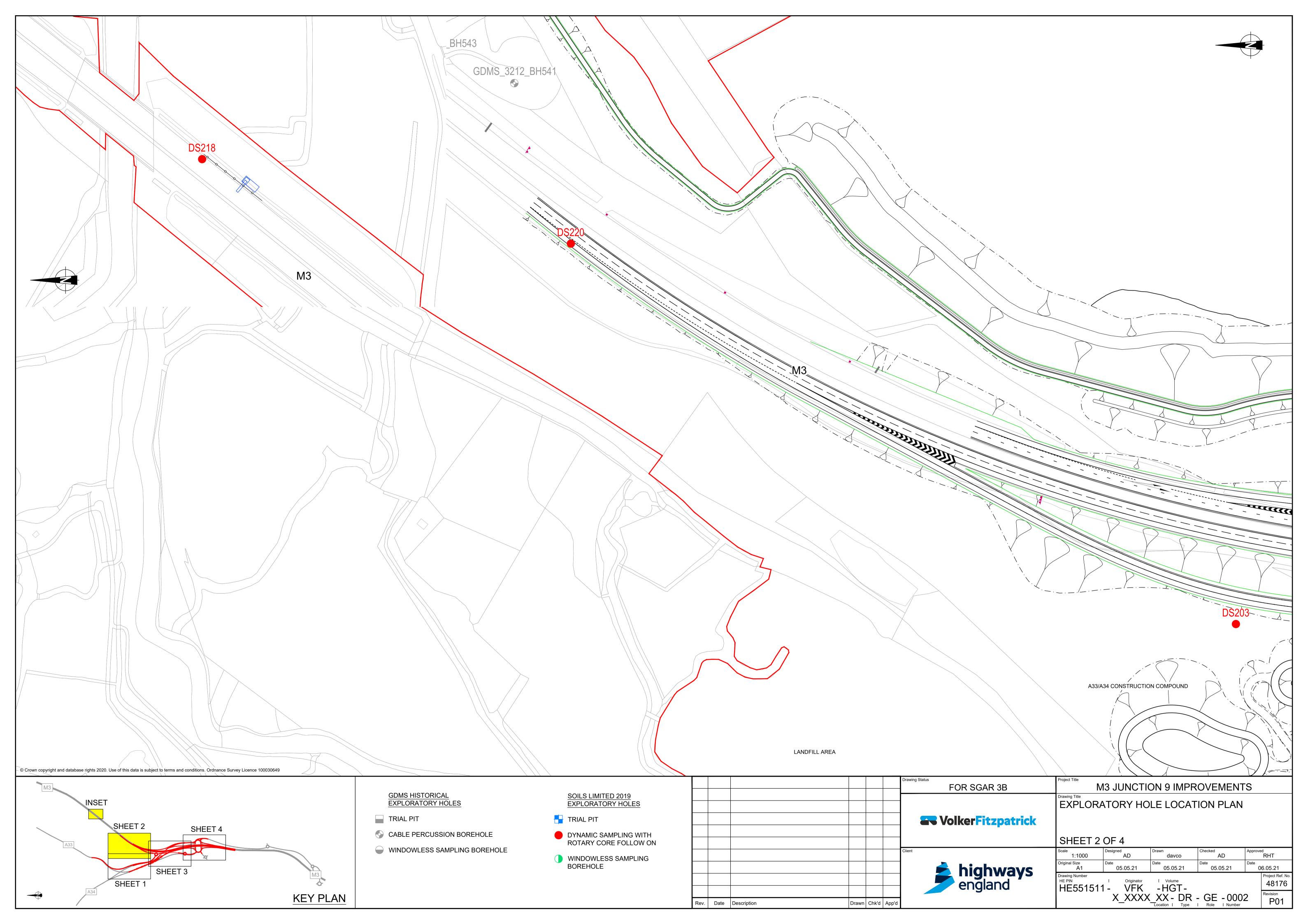
Component Number		Weighting Factor	Property or Parameter	Risk Score	Component score	Weighted component score
1		10	Traffic flow	>=100,000 AADT	3	30
2	SOURCE	10	Rainfall depth (annual averages)	>740 to <1060 mm rainfall	2	20
3		10	Drainage area ratio	<=50	1	10
4		15	Infiltration method	"Region", shallow infiltration systems (e.g. infiltration basin)	2	30
5		20	Unsaturated zone	Depth to water table <15 m to >5 m	2	40
6	PATHWAY	20	Flow type (Incorporates flow type an effective grain size)	Mixed fracture and intergranular flow (e.g. consolidated deposits or unconsolidated deposits of medium – coarse sand)	2	40
7	PAIRWAT	5	Unsaturated Zone Clay Content	<=1% clay minerals	3	15
8		5	Organic Carbon	<=1% SOM	3	15
9		5	Unsaturated zone soil pH	pH <8 to >5	2	10

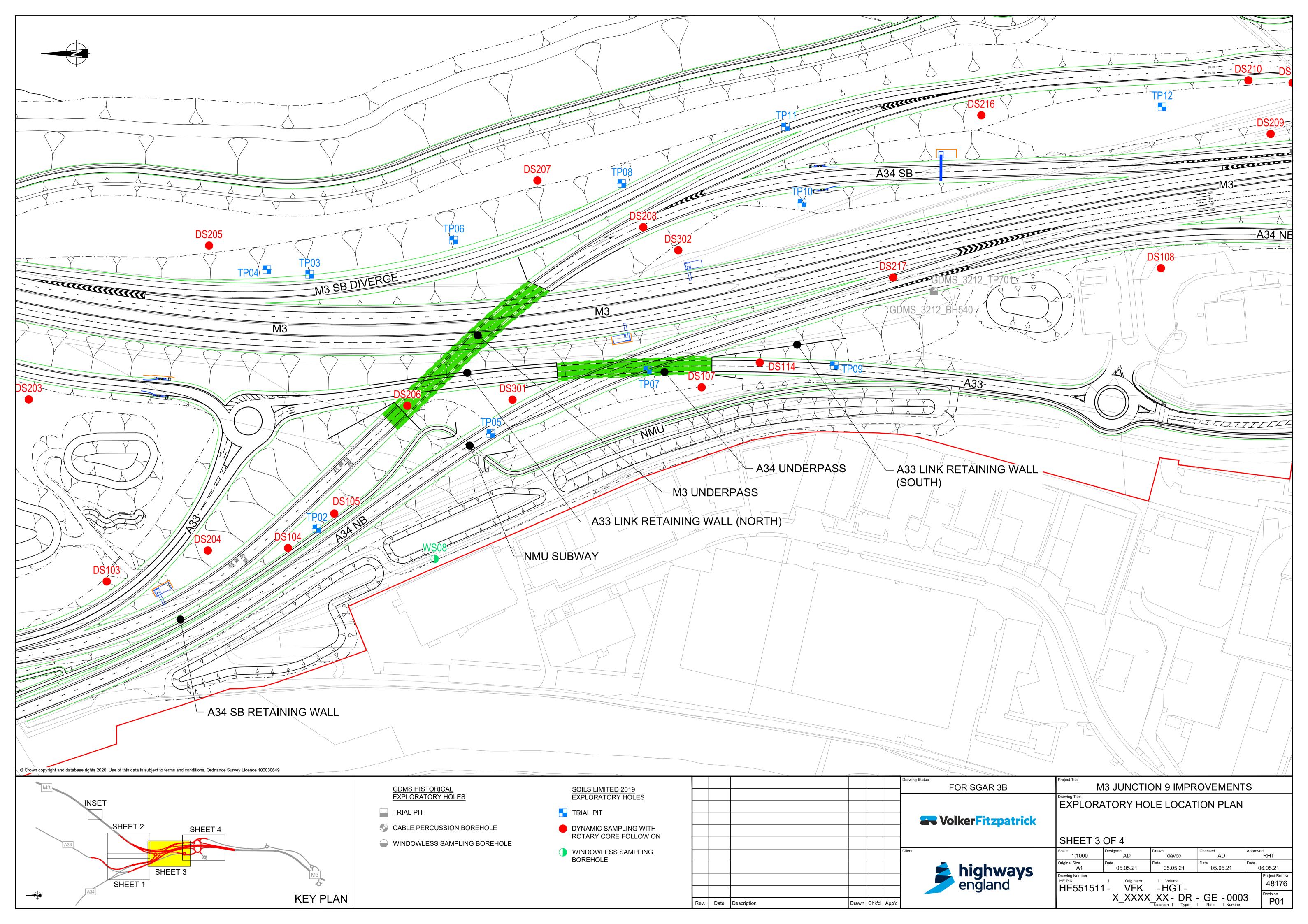
TOTAL SCORE 210
RISK SCREENING LEVEL Medium

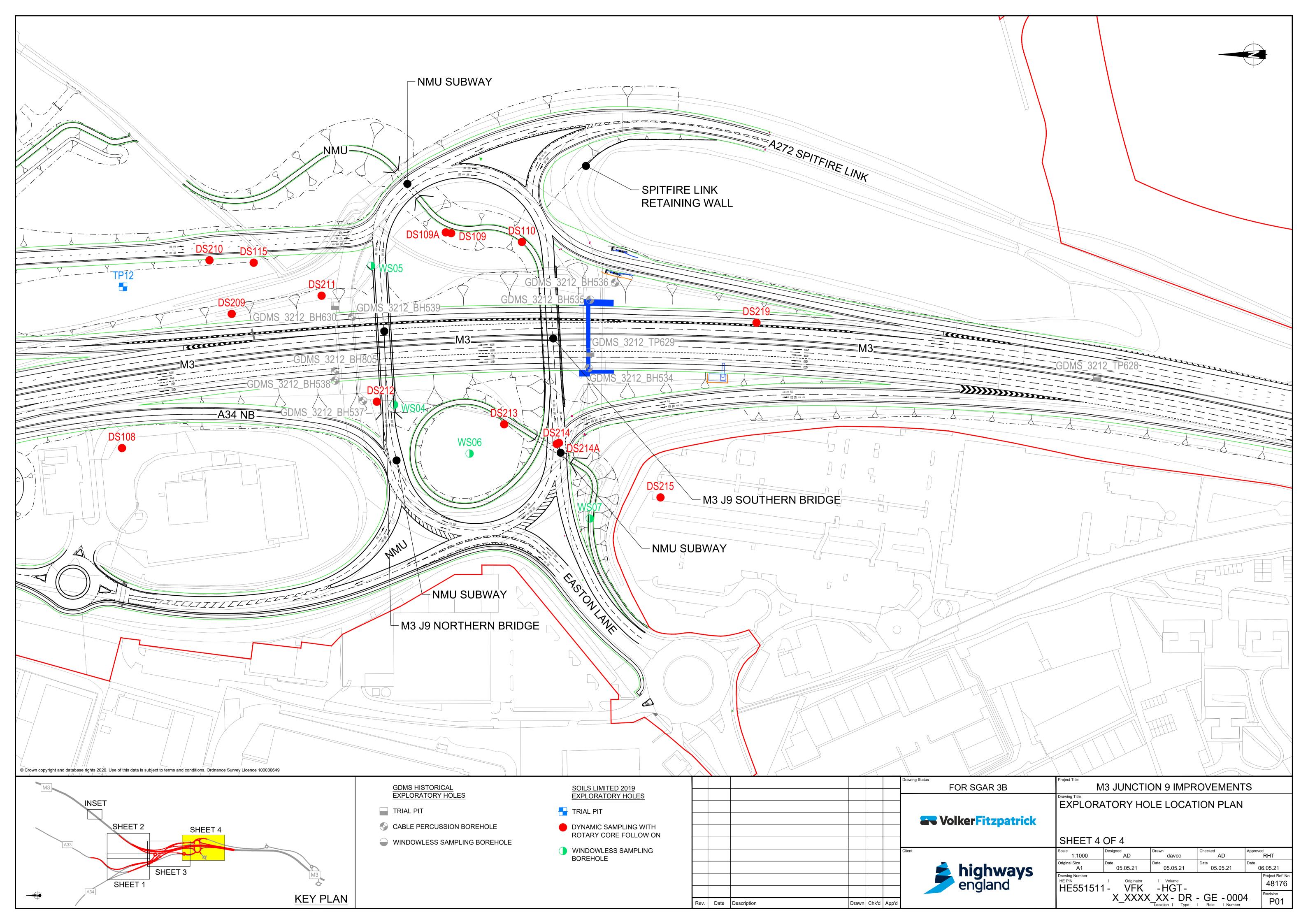
Spillage Risks Basin 5 HEWRAT

٥	highways england	and View Parameters		Reset Spillage Risk		Go To Ir	Go To Interface			
		A (main road)	T-	В	С	D	E	F		
D1	Water body type	Surface watercours	se							
D2	Length of road draining to outfall (m)	500								
D3	Road Type (A-road or Motorway)	M								
D4	If A road, is site urban or rural?	Rural			Al P				- (
D5	Junction type	Slip road					- 15			
D6	Location (response time for emergency services)	< 1 hour			All I					
D7	Traffic flow (AADT two way)	149,961							- (
D8	% HGV	11								
D8	Spillage factor (no/10° HGVkm/year)	0.43								
	Risk of accidental spillage	0.00129	0.00000		0.00000	0.00000	0.00000	0.00000		
D10	Probability factor	0.60	17-		A					
D11	Risk of pollution incident	0.00078	0.00000	-	0.00000	0.00000	0.00000	0.00000		Return
D12	2 Is risk greater than 0.01?	No			A	4			Totals	Period
D13	Return period without pollution reduction measures	0.00078	0.00000		0.00000	0.00000	0.00000	0.00000	0.0008	1287
D14	Existing measures factor	0.6								
D15	Return period with existing pollution reduction	0.00047	0.00000		0.00000	0.00000	0.00000	0.00000	0.0005	2146
	Proposed measures factor	0.6								
D17	Residual with proposed Pollution reduction measures	0.00028	0.00000		0.00000	0.00000	0.00000	0.00000	0.0003	3576

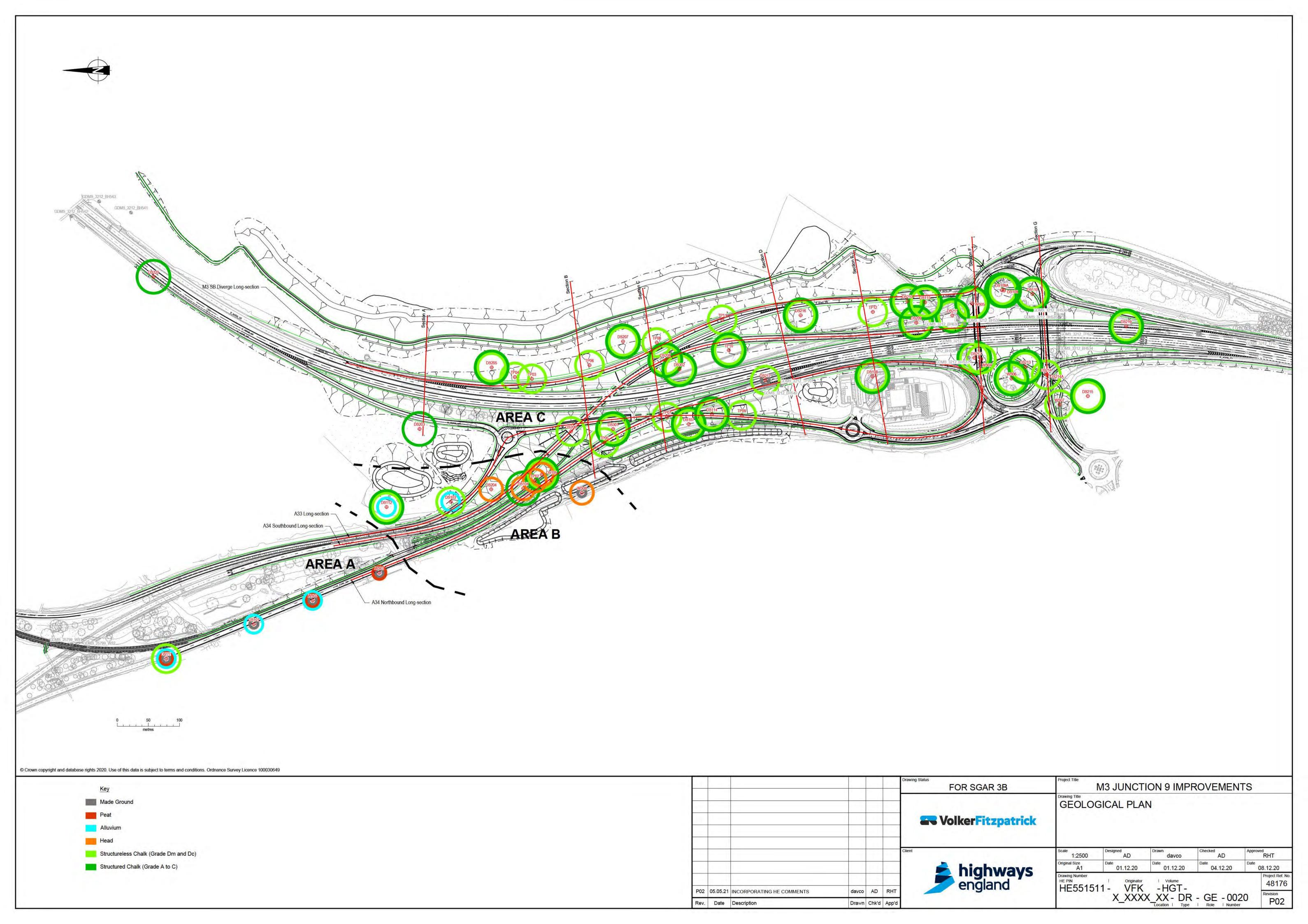

Justification for choice of existing measures factors

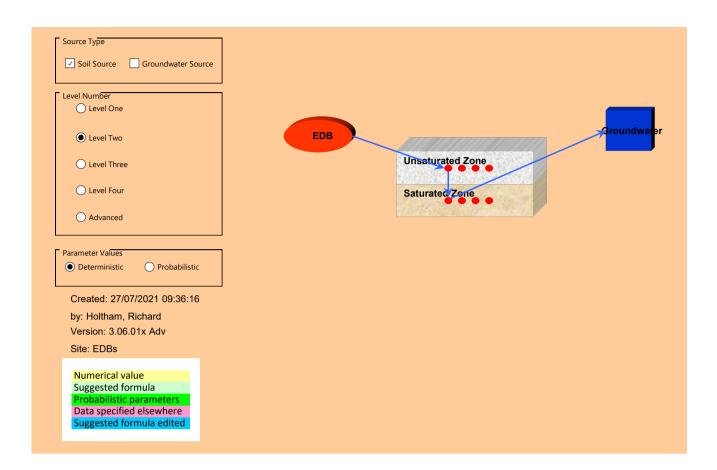

Justification for choice of proposed measures factors


The worksheet should be read in conjunction with DMRB 11.3.10.



Appendix C HE551551-VFK-HGT-X_XXXX_XX-DR-GE-004 Exploratory hole location plan





Appendix D HE551551-VFK-HGT-X_XXXX_XX-DR-GE-0020 Geological plan

Appendix E RAM model files

SOURCE CONCENTRATIONS: EDB

SOIL SOURCE

Source Data Options

Source Type

 Pore water concentrations 	
C Leaching test	

O Soil contaminant concentrations

ledow	Constant source
\bigcirc	Declining source

Source Geometry

EDB_Source_length EDB_Source_width EDB_Source_area EDB_Source_thickness EDB_Source_volume

m	28.03333
m	150
m2	4205
m	1
m3	4205

Source Contaminant Information

Source determinand names		Copper	Zinc
EDB_Pore_water_concentration	mg/L	0.145	0.797
EDB_Input_concentration	mg/L	0.145	0.797

CONTAMINANT INFORMATION

	_	Species1	Species2
Source determinand names	▼	2 <mark>Copper</mark>	Zinc

Receptor Target Concentrations

	Name	Values in mg/L	
Quality Standard 1	EAL	2	5
Quality Standard 2			
Quality Standard 3			
Quality Standard 4			

Generic Contaminant Properties

Contaminants_Organic_Carbon_Water_Partition_Coefficient_Koc	L/kg	
Contaminants_Free_Water_Diffusion_Coefficient	m2/s	

HYDROGEOLOGICAL UNITS

Hydrogeological Units			Unsaturate Saturated Zo		
Hydrogeology_Unit_Thickness	m	3.8	5		
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)				
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-05	1.00E-05		
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076		
Hydrogeology_Porosity	[-]	0.1	0.01		
Hydrogeology_Velocity	m/s	5E-05	7.6E-06		
Hydrogeology_Tortuosity	[-]				

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Saturate	e <mark>d Z</mark> one
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.001	

Contaminant specific parameters

Attenuation_Decay_Coefficient_Species_2

Copper

Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1

1/s

0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 157680 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 157680 mm/year
Infiltration_Area 4205 m2

Q_Infiltration 0.021010609 m3/s

Infiltration rate check 5.0E-06 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

Section 1		Section 2		Section 3		Section 4	
Source		Unit		Unit		Receptor	
EDB		Unsaturated Zone: Node 1		ode 1	Saturated Zone: Node 1		Groundwater
Constant source		ADRD (1D)			Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-05				
Managed time [years]	0.000E+00	Dispersivity [m]	0.4				
Q_path [m3/s]	2.101E-02	Travel Distance [m]	3.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
				Mixing Width [m]	150.0		
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	5.700E-05	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

nte Carlo Analysis	with Crystal Ball		
Reported Percent Number of simula Stop on calculation	ations	95 10000	
Use same sequence	e of random numbers		
Minimise while ru	unnina:		
	lothing		
O A	II Spreadsheets (faster)		
	Microsoft Excel (fastest)		

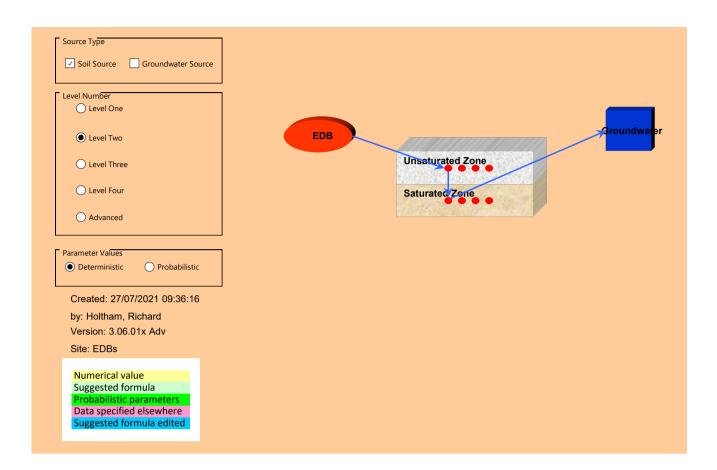
Laplace Transform Solu	tion Paramet	ers
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced lev
Use the array form of the RAM function	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $,
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

CONTAMINANT INFORMATION

				Species1	Species2	Species3	Species4	Species5	Species6	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthre
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	. 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
Generic Contaminant Properties										
Contaminants_Solubility		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Henrys_Law_Constant		[-]								
Contaminants_nem yo_zaw_constant										
Contaminants_Organic_Carbon_Water_Partitio	n_Coefficient_Koc	L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04
			•	,		•	•	•		
Contaminants_Free_Water_Diffusion_Coefficie	nt	m2/s				·	·			

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate Saturated Zo			
Hydrogeology_Unit_Thickness	m	13.1	5		
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)				
Hydrogeology_Hydraulic_Conductivity	m/s	5.0E-07	1.00E-05		
Tryurogeology_Tryuraunt_conductivity	11173	J.UL-07	1.001-03		
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076		
Hydrogeology_Porosity	[-]	0.1	0.01		
Hydrogeology_Velocity	m/s	5E-06	7.6E-06		
Hydrogeology_Tortuosity	[-]				

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	ırated Zor
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc	,		
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No I	
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	
			0
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	U
Phenanthrene	- 10		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 1351 m2

Q_Infiltration 0.000675038 m3/s

Infiltration rate 5.0E-07

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: No	ode 1 Saturated Zone: Node		1	Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	1.3				
Q_path [m3/s]	6.750E-04	Travel Distance [m]	13.1				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
				Mixing Width [m]			
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants						
s_per_year	31557600	l				
s_per_day	86400	ļ				
Laplace Transform Solution Parameters						

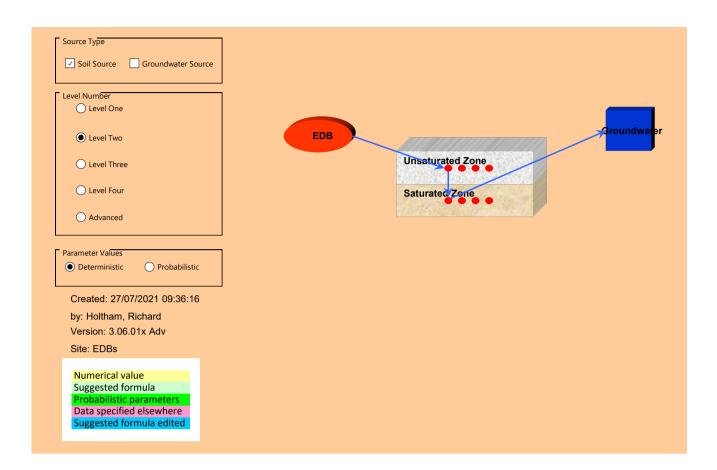
Laplace Transform Solution Parameters					
sigma	0				
nu	1				
nsum	16				
omega	11				

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced leve
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	1
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

CONTAMINANT INFORMATION

				Species1	Species2	Species3	Species4	Species5	Species6	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthre
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	. 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
Generic Contaminant Properties										
Contaminants_Solubility		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Henrys_Law_Constant		[-]								
Contaminants_nem yo_zaw_constant										
Contaminants_Organic_Carbon_Water_Partitio	n_Coefficient_Koc	L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04
			•	,		•	•	•		
Contaminants_Free_Water_Diffusion_Coefficie	nt	m2/s				·	·			

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate Saturated Zon			
Hydrogeology_Unit_Thickness	m	13.1	20		
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)				
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001		
H. dansalas H. dan P. Carlland		4	0.0076		
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076		
Hydrogeology_Porosity	[-]	0.1	0.01		
Hydrogeology_Velocity	m/s	5E-06	7.6E-06		
Hydrogeology_Tortuosity	[-]				

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
	kg/m3	1800	
Attenuation_Dry_bulk_density			
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	247861	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Einc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	5419	1
Attenuation_Half_Life_Species_2	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	13519	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	12241	1
Attenuation_Half_Life_Species_4	days	60 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	8839	1
Attenuation_Half_Life_Species_5	days	182 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	4231	1
Attenuation_Half_Life_Species_6	days	210 No I	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	3763	1
Attenuation_Half_Life_Species_7	days	90 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 1351 m2

Q_Infiltration 0.000675038 m3/s

Infiltration rate check 5.00E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: N		ode 1 Saturated Zone: Node		Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	1.3				
Q_path [m3/s]	6.750E-04	Travel Distance [m]	13.1				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
				Mixing Width [m]	55.0		
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	2.090E-05	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants		
s_per_year	31557600	l
s_per_day	86400	ļ
Laplace Transform Solut	ion Paramete	ers

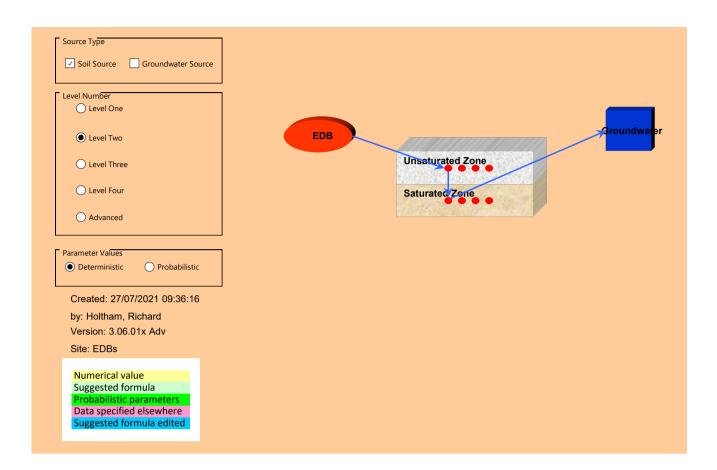
Laplace Transform Solution Parameters				
sigma	0			
nu	1			
nsum	16			
omega	11			

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced leve
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	1
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

CONTAMINANT INFORMATION

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hudrogoology Log Hydroylio Conductivity	log/m/s)		
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.001	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium	•		<u> </u>
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days		Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene	1/3	U	0
	. //	60	
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	68	0
Attenuation_Retardation_Species_4	[-]	1622.8	1
Attenuation_Half_Life_Species_4	days	1925 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	49.1	0
Attenuation_Retardation_Species_5	[-]	1172.035	1
Attenuation_Half_Life_Species_5	days	462 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	23.5	0
Attenuation_Retardation_Species_6	[-]	561.475	1
Attenuation_Half_Life_Species_6	days	365 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	20.9	0
Attenuation_Retardation_Species_7	[-]	499.465	1
Attenuation_Half_Life_Species_7	days	730 No	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 2046 m2

Q_Infiltration 0.0010223 m3/s

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

		Section 1		Section 2		Section 3		Section 4
ſ		Source		Unit		Unit		Receptor
		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
							Target Standard	EAL
ĺ	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
	Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
					Mixing Width [m]			
			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants		
s_per_year	31557600	l
s_per_day	86400	ļ
Laplace Transform Solut	ion Paramete	ers

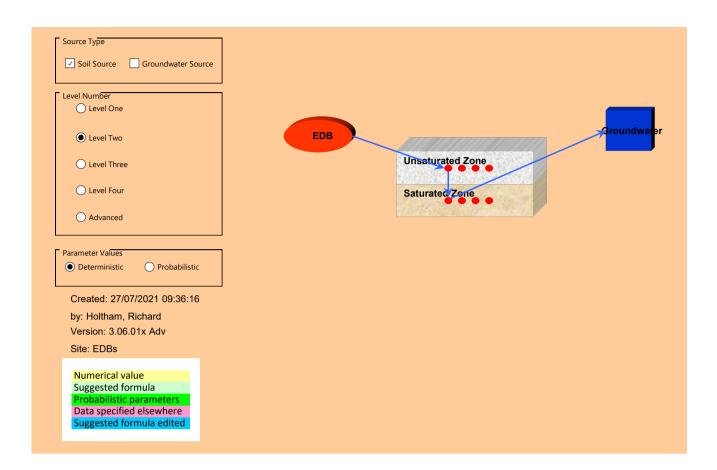
Laplace Transform Solution Parameters				
sigma	0			
nu	1			
nsum	16			
omega	11			

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced leve
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	1
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

CONTAMINANT INFORMATION

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zone
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	9.99E-06	7.6E-06
 			
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	ırated Zor
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc	,		
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No I	
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	
			0
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	U
Phenanthrene	- 10		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall	31536	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	31536	mm/year
Infiltration_Area	2046	m2
		=

Q_Infiltration 0.0020446 m3/s

Infiltration rate check 1.0E-06 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

_								
		Section 1		Section 2		Section 3		Section 4
		Source		Unit		Unit		Receptor
		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
							Target Standard	EAL
	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	9.993E-06				
	Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
	Q_path [m3/s]	2.045E-03	Travel Distance [m]	5.8				
	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
					Mixing Width [m]			
			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants		
s_per_year	31557600	l
s_per_day	86400	ļ
Laplace Transform Solut	ion Paramete	ers

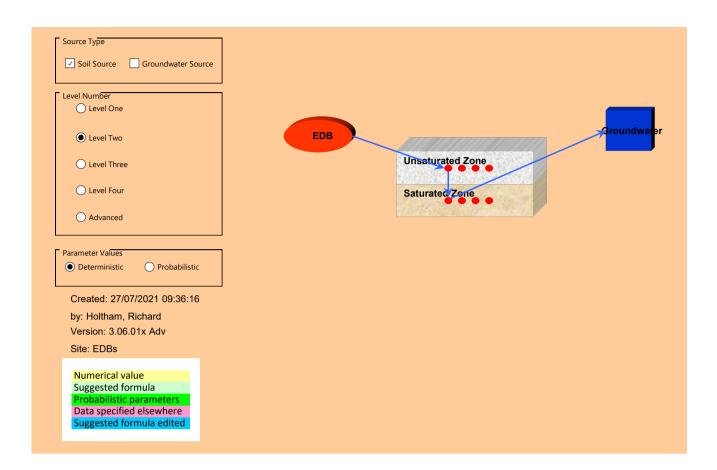
Laplace Transform Solu	tion Paramet	ers
sigma	0	
nu	1	
nsum	16	
omega	11	

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced leve
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	1
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

CONTAMINANT INFORMATION

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	10.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	ırated Zor
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc	,		
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No I	
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	
			0
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	U
Phenanthrene	- 10		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 2046 m2

Q_Infiltration 0.0010223 m3/s

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

Section 1		Section 2		Section 3		Section 4	
Source			Unit		Unit		Receptor
EDB			Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	1.1				
Q_path [m3/s]	1.022E-03	Travel Distance [m]	10.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
				Mixing Width [m]			
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

SIMULATION PARAMETERS

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants		
s_per_year	31557600	l
s_per_day	86400	ļ
Laplace Transform Solut	ion Parameto	ers

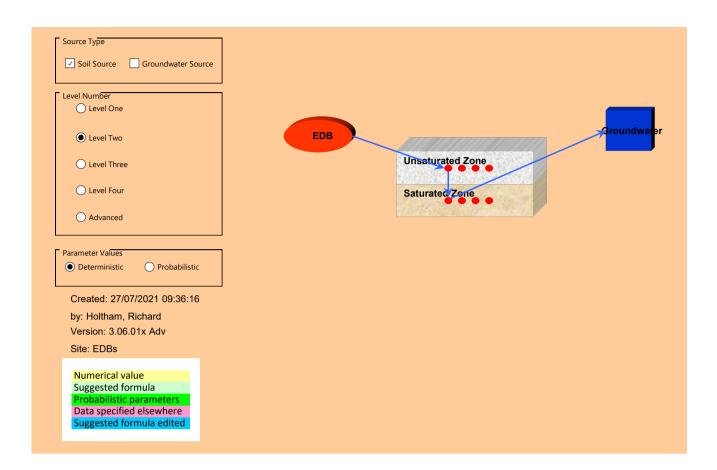
Laplace Transform Solution Parameters				
sigma	0			
nu	1			
nsum	16			
omega	11			

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced level
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	/
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

				Species1	Species2	Species3	Species4	Species5	Species6	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthre
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	. 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
Generic Contaminant Properties										
Contaminants_Solubility		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Henrys_Law_Constant		[-]								
Contaminants_nem yo_zaw_constant										
Contaminants_Organic_Carbon_Water_Partitio	n_Coefficient_Koc	L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04
			•	,		•	•	•		
Contaminants_Free_Water_Diffusion_Coefficie	nt	m2/s				·	·			

HYDROGEOLOGICAL UNITS

Hydrogeological Units	Unsaturate Saturated Zo			
Hydrogeology_Unit_Thickness	m	5.8	5	
Hudrogoology Log Hydroylio Conductivity	log/m/s)			
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)			
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001	
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076	
Hydrogeology_Porosity	[-]	0.1	0.01	
Hydrogeology_Velocity	m/s	5E-06	7.6E-06	
Hydrogeology_Tortuosity	[-]			

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	ırated Zor
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc	,		
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No I	
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	
			0
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	U
Phenanthrene	- 10		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 2046 m2

Q_Infiltration 0.0010223 m3/s

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source	ource Unit		Unit			Receptor
	EDB Unsaturated Zone: No		ode 1 Saturated Zone: No		1	Groundwater	
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
				Mixing Width [m]			
		Q Dilute [m3/s]	0	Q Dilute [m3/s]	0.000E+00	Q dilute [m3/s]	0.000E+00

e Carlo Analysis with Crystal Ball	
Reported Percentile Number of simulations	95 10000
Stop on calculation error Use same sequence of random numbers	
Minimina while woodings	
Minimise while running: Nothing	
All Spreadsheets (faster)	

Named Constants						
s_per_year	31557600	l				
s_per_day	86400	ļ				
Laplace Transform Solution Parameters						

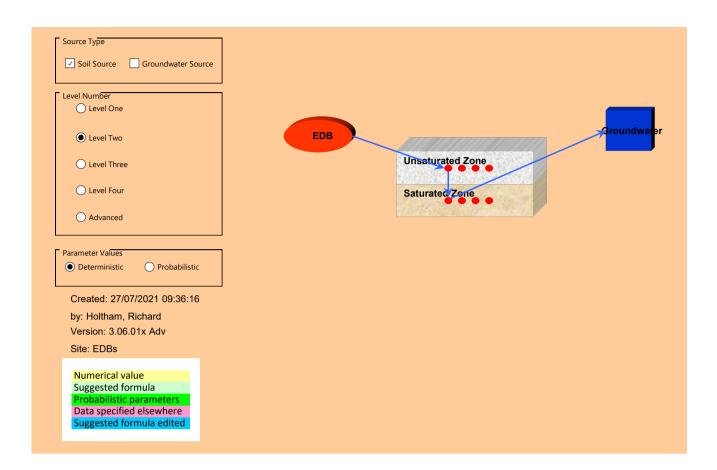
Laplace Transform Solution Parameters					
sigma	0				
nu	1				
nsum	16				
omega	11				

Reporting Options

☐ Include Remedial Targets and Attenuation Factors on the results	sheets in Advanced leve
Use the array form of the RAM function	
Include a set of timeslices for each contaminant in each pathway	1
Number of timeslices for breakthrough curves	4

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

				Species1	Species2	Species3	Species4	Species5	Species6	Species7
Source determinand names		•	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthre
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	. 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
Generic Contaminant Properties										
Contaminants_Solubility		mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Henrys_Law_Constant		[-]								
Contaminants_nem yo_zaw_constant										
Contaminants_Organic_Carbon_Water_Partitio	n_Coefficient_Koc	L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04
			•	,		•	•	•		
Contaminants_Free_Water_Diffusion_Coefficie	nt	m2/s				·	·			

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zone
Hydrogeology_Unit_Thickness	m	5.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	9.99E-06	7.6E-06
 			
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Einc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall	31536	mm/year
Infiltration_Factor	1	[-]
Infiltration_Rate	31536	mm/year
Infiltration_Area	2046	m2
		=

Q_Infiltration 0.0020446 m3/s

Infiltration rate check 1.0E-06 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	9.993E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Q_path [m3/s]	2.045E-03	Travel Distance [m]	5.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
				Mixing Width [m]	22.0		
		O Dilute [m3/s]	0	O Dilute [m3/s]	8 360F-06	O dilute [m3/s]	0.000E+00

95 10000	

Named Constants		
s_per_year s_per_day	31557600 86400	
0_pcuuy	00.00	

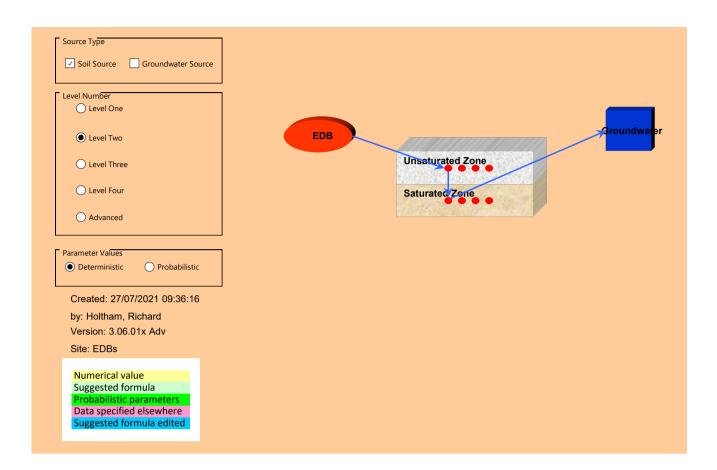
Laplace Transform Solu	tion Paramet	ers
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

☐ Include Remedial Targets and Attenu	ation Factors on the results sheets in Advanced leve
Use the array form of the RAM functi	on
☐ Include a set of timeslices for each co	ntaminant in each pathway
Number of timeslices for breakthree	ugh curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	10.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Einc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 2046 m2

Q_Infiltration 0.0010223 m3/s

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

_								
		Section 1		Section 2		Section 3		Section 4
		Source		Unit		Unit		Receptor
		EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
		Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
							Target Standard	EAL
	Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
	Managed time [years]	0.000E+00	Dispersivity [m]	1.1				
	Q_path [m3/s]	1.022E-03	Travel Distance [m]	10.8				
	Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
					Mixing Width [m]	22.0		
			Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	8.360E-06	Q_dilute [m3/s]	0.000E+00

95 10000	

Named Constants		
s_per_year s_per_day	31557600 86400	
0_pcuuy	00.00	

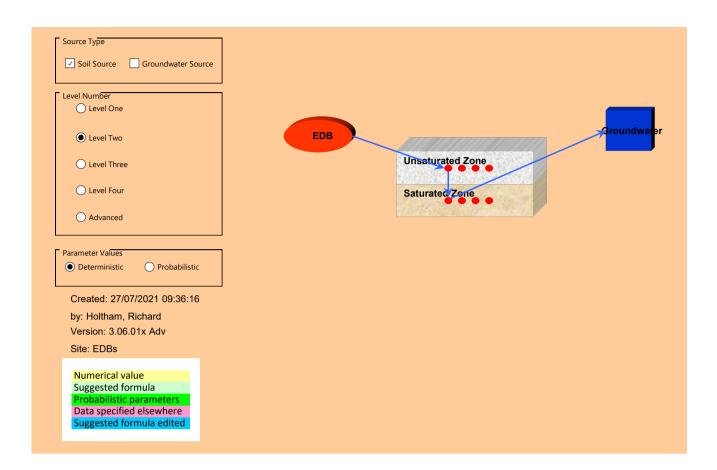
Laplace Transform Solu	tion Paramet	ers
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

☐ Include Remedial Targets and Attenu	ation Factors on the results sheets in Advanced leve
Use the array form of the RAM functi	on
☐ Include a set of timeslices for each co	ntaminant in each pathway
Number of timeslices for breakthree	ugh curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	5.8	5
Hudrogoology Log Hydroylio Conductivity	log/m/s)		
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Einc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 2046 m2

Q_Infiltration 0.0010223 m3/s

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	0.6				
Q_path [m3/s]	1.022E-03	Travel Distance [m]	5.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
				Mixing Width [m]	22.0		
		Q Dilute [m3/s]	0	Q Dilute [m3/s]	8.360E-06	Q dilute [m3/s]	0.000E+00

95 10000	

Named Constants		
s_per_year s_per_day	31557600 86400	
0_pcuuy	00.00	

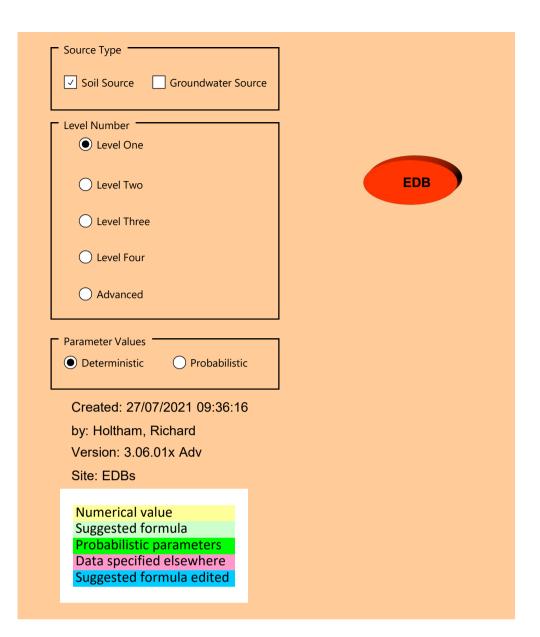
Laplace Transform Solu	tion Paramet	ers
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

☐ Include Remedial Targets and Attenu	ation Factors on the results sheets in Advanced leve
Use the array form of the RAM functi	on
☐ Include a set of timeslices for each co	ntaminant in each pathway
Number of timeslices for breakthree	ugh curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

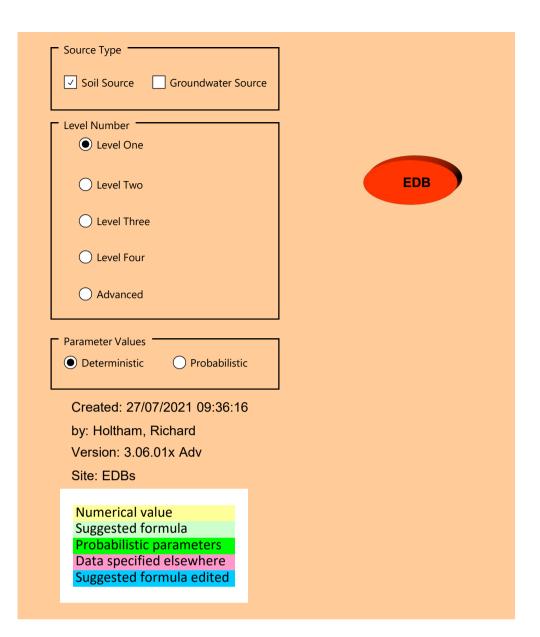
0.1

1

10

100

		Species1 Species2
Source determinand names	-	2 <mark>Copper Zinc</mark>

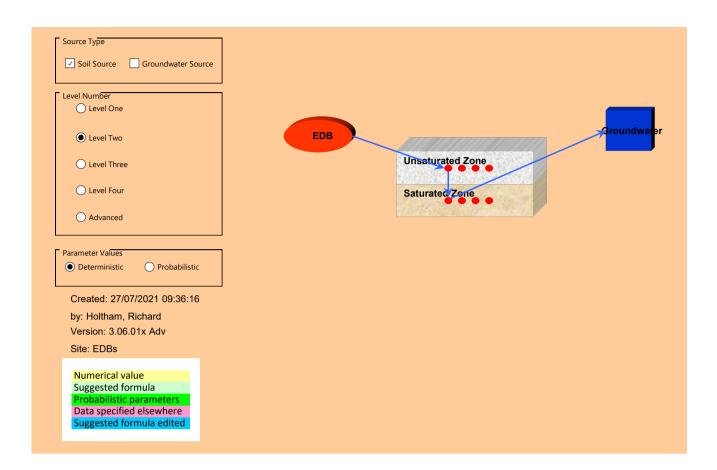

Receptor Target Concentrations

	Name	Values in r	mg/L	
Quality Standard 1	EAL	2	<u> </u>	5
Quality Standard 2				
Quality Standard 3				
Quality Standard 4				

	nalysis with Crystal I	Dall .	
Reported	d Percentile		95
Number	of simulations	1	.0000
Stop or	n calculation error		
Use sar	ne sequence of random num	bers	
Minimise	e while running:		
	Nothing		
	All Spreadsheets (f	aster)	
	Microsoft Excel (fa:	stest)	
Uso the	array form of the RAM func	tion	
	a set of timeslices for each o		pathway
Include	*	contaminant in each p	pathway 5
Include	a set of timeslices for each o	contaminant in each p	5
Number o	a set of timeslices for each of	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the reseslices in years	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the reseslices in years	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the resestices in years	contaminant in each p	5
Number o	a set of timeslices for each of timeslices for breakthrons specified on the resestices in years	contaminant in each p	5
Number of imeslices	a set of timeslices for each of timeslices for breakthrous specified on the resestices in years	contaminant in each p	5

Named Constants	
s_per_year	31557600
s_per_day	86400
Lanlace Transform Solut	ion Parameters
Laplace Transform Solut	ion Parameters
Laplace Transform Solut	ion Parameters

nsum omega



		Species1	Species2	Species3	Species4	Species5	Species6	Species7
~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	Phenanthren
Name		Values in r	ng/L					
1 EAL		2	. 5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
2								
3								
4								
mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
[-]								
L/kg					6.80E+04	4.91E+04	2.35E+04	2.09E+04
	Name 1 EAL 2 3 4	Name 1 EAL 2 3 4 mg/L	Name Values in r 1 EAL 2 2 3 4	Name Values in mg/L 2 5 2 2 3 4	Name Values in mg/L 1 EAL 2 5 5.00E-03 2 3 4	Name Values in mg/L 1 EAL 2 5 5.00E-03 5.00E-06 2 3 4 mg/L 2.93E+05 6.06E+05 6.51E+05 0.137	Name Values in mg/L 1 EAL 2 5 5.00E-03 5.00E-06 5.00E-05 2 3 4 mg/L 2.93E+05 6.06E+05 6.51E+05 0.137 2.32E-01	Name Values in mg/L 1 EAL 2 5 5.00E-03 5.00E-06 5.00E-05 5.00E-05 3 4 mg/L 2.93E+05 6.06E+05 6.51E+05 0.137 2.32E-01 5.37E-02

	nalysis with Crystal I	Dall .	
Reported	d Percentile		95
Number	of simulations	1	.0000
Stop or	n calculation error		
Use sar	ne sequence of random num	bers	
Minimise	e while running:		
	Nothing		
	All Spreadsheets (f	aster)	
	Microsoft Excel (fa:	stest)	
Uso the	array form of the RAM func	tion	
	a set of timeslices for each o		pathway
Include	*	contaminant in each p	pathway 5
Include	a set of timeslices for each o	contaminant in each p	5
Number o	a set of timeslices for each of	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the reseslices in years	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the reseslices in years	contaminant in each p	5
Number o	a set of timeslices for each of f timeslices for breakthro sespecified on the resestices in years	contaminant in each p	5
Number o	a set of timeslices for each of timeslices for breakthrons specified on the resestices in years	contaminant in each p	5
Number of imeslices	a set of timeslices for each of timeslices for breakthrous specified on the resestices in years	contaminant in each p	5

Named Constants	
s_per_year	31557600
s_per_day	86400
Lanlace Transform Solut	ion Parameters
Laplace Transform Solut	ion Parameters
Laplace Transform Solut	ion Parameters

nsum omega

								Species5	Species6	
Source determinand names		~	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in r	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	3.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Tryanogeology_Tryandane_conductivity	, 3	1.002 00	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	ırated Zor
General properties			
	ka/m2	2385	
Attenuation_Dry_bulk_density	kg/m3		
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Zinc	,		
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No I	
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No I	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	1925 No I	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	4.17E-09	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	462 No I	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	1.74E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	365 No I	
			0
Attenuation_Decay_Coefficient_Species_6	1/s	2.2E-08	U
Phenanthrene	- 10		
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	730 No I	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	1.1E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 4205 m2

Infiltration rate check 5.00E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: No	ode 1	Saturated Zone: Node	1	Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	0.4				
Q_path [m3/s]	2.101E-03	Travel Distance [m]	3.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]			
				Mixing Width [m]			
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	0.000E+00	Q_dilute [m3/s]	0.000E+00

95 10000	

Named Constants		
s_per_year s_per_day	31557600 86400	
0_pcuuy	00.00	

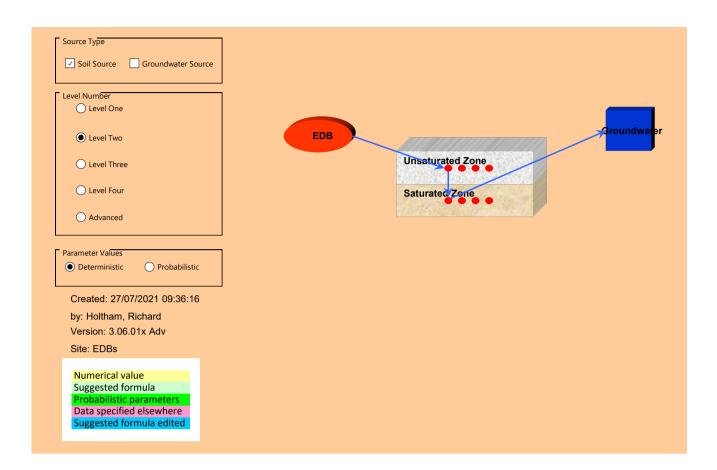
Laplace Transform Solution Parameters		
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

☐ Include Remedial Targets and Attenu	ation Factors on the results sheets in Advanced leve
Use the array form of the RAM functi	on
☐ Include a set of timeslices for each co	ntaminant in each pathway
Number of timeslices for breakthree	ugh curves

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years


TS_Path1

0.1

1

10

100

								Species5		
Source determinand names		v	7	Copper	Zinc	Cadmium	Pyrene	Fluoranthe	Anthracen	€ Phenanthrer
Receptor Target Concentrations										
		Name		Values in n	ng/L					
	Quality Standard 1	EAL		2	5	5.00E-03	5.00E-06	5.00E-05	5.00E-05	5.00E-06
	Quality Standard 2									
	Quality Standard 3									
	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties	Quality Standard 4									
	Quality Standard 4									
Generic Contaminant Properties Contaminants_Solubility	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
	Quality Standard 4	mg/L		2.93E+05	6.06E+05	6.51E+05	0.137	2.32E-01	5.37E-02	1.28
Contaminants_Solubility				2.93E+05	6.06E+05	6.51E+05	0.137 6.80E+04			1.28 2.09E+04

HYDROGEOLOGICAL UNITS

Hydrogeological Units		Unsaturate S	Saturated Zo
Hydrogeology_Unit_Thickness	m	3.8	5
Hydrogeology_Log_Hydraulic_Conductivity	log(m/s)		
Hydrogeology_Hydraulic_Conductivity	m/s	1.00E-06	0.00001
Tryanogeology_Tryandane_conductivity	, 3	1.002 00	0.00001
Hydrogeology_Hydraulic_Gradient	[-]	1	0.0076
Hydrogeology_Porosity	[-]	0.1	0.01
Hydrogeology_Velocity	m/s	5E-06	7.6E-06
Hydrogeology_Tortuosity	[-]		

ATTENUATION PARAMETERS

Hydrogeological Units		Unsaturate Satu	urated Zo
General properties			
Attenuation_Dry_bulk_density	kg/m3	2385	
Attenuation_Fraction_organic_carbon	[-]	0.01	
Contaminant specific parameters			
Copper			
Attenuation_Partition_Coefficient_Kd_Species_1	L/kg	13770	0
Attenuation_Retardation_Species_1	[-]	328415.5	1
Attenuation_Half_Life_Species_1	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_1	1/s	0	0
Einc			
Attenuation_Partition_Coefficient_Kd_Species_2	L/kg	301	0
Attenuation_Retardation_Species_2	[-]	7179.85	1
Attenuation_Half_Life_Species_2	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_2	1/s	0	0
Cadmium			
Attenuation_Partition_Coefficient_Kd_Species_3	L/kg	751	0
Attenuation_Retardation_Species_3	[-]	17912.35	1
Attenuation_Half_Life_Species_3	days	No Decay No	Decay
Attenuation_Decay_Coefficient_Species_3	1/s	0	0
Pyrene			
Attenuation_Partition_Coefficient_Kd_Species_4	L/kg	680	0
Attenuation_Retardation_Species_4	[-]	16219	1
Attenuation_Half_Life_Species_4	days	60 No	Decay
Attenuation_Decay_Coefficient_Species_4	1/s	1.34E-07	0
Fluoranthene			
Attenuation_Partition_Coefficient_Kd_Species_5	L/kg	491	0
Attenuation_Retardation_Species_5	[-]	11711.35	1
Attenuation_Half_Life_Species_5	days	182 No	Decay
Attenuation_Decay_Coefficient_Species_5	1/s	4.41E-08	0
Anthracene			
Attenuation_Partition_Coefficient_Kd_Species_6	L/kg	235	0
Attenuation_Retardation_Species_6	[-]	5605.75	1
Attenuation_Half_Life_Species_6	days	210 No	Decay
Attenuation_Decay_Coefficient_Species_6	1/s	3.82E-08	0
Phenanthrene			
Attenuation_Partition_Coefficient_Kd_Species_7	L/kg	209	0
Attenuation_Retardation_Species_7	[-]	4985.65	1
Attenuation_Half_Life_Species_7	days	90 No	Decay
Attenuation_Decay_Coefficient_Species_7	1/s	8.91E-08	0

WATER BALANCE

Infiltration through the soil zone source

Source Name: EDB

Effective_Rainfall 15768 mm/year
Infiltration_Factor 1 [-]
Infiltration_Rate 15768 mm/year
Infiltration_Area 4205 m2

Infiltration rate check 5.0E-07 m/s

PATHWAY SUMMARY

Path 1
Path 1 Type
Path 1 Name
Path 1 Process
Path 1 Standards
Path 1 Parameter1
Path 1 Parameter2
Path 1 Parameter3
Path 1 Parameter4
Path 1 Parameter5
Path 1 Parameter6

	Section 1		Section 2		Section 3		Section 4
	Source		Unit		Unit		Receptor
	EDB		Unsaturated Zone: No	ode 1	de 1 Saturated Zone: Node		Groundwater
	Constant source		ADRD (1D)		Aquifer Dilution Only		Monitoring Borehole
						Target Standard	EAL
Q_managed [m3/s]	0.000E+00	Velocity [m/s]	4.997E-06				
Managed time [years]	0.000E+00	Dispersivity [m]	0.4				
Q_path [m3/s]	2.101E-03	Travel Distance [m]	3.8				
Q_decline [m3/s]	0.000E+00			Mixing Depth [m]	5.0		
				Mixing Width [m]	150.0		
		Q_Dilute [m3/s]	0	Q_Dilute [m3/s]	5.700E-05	Q_dilute [m3/s]	0.000E+00

nte Carlo Analysis with C	rystal Ball			
Reported Percentile Number of simulations Stop on calculation error		95 10000		
Use same sequence of ran	dom numbers			
Minimise while running	:			
Nothing				
○ All Sprea	dsheets (faster)			
	Excel (fastest)			

Named Constants		
s_per_year s_per_day	31557600 86400	
0_pcuuy	00.00	

Laplace Transform Solu	tion Paramet	ers
sigma nu	0	
nsum	16	
omega	11	

Reporting Options

	Include Remedial Targets and Attenuation Factors on the result	s sheets in Advanc	ed leve
	Use the array form of the RAM function		
	Include a set of timeslices for each contaminant in each pathwa	у	
Niur	nhar of timaclicas for broakthrough curves	1	

The timeslices specified on the results sheets are saved below.

Path1 timeslices in years

TS_Path1

0.1

1

10

100